devcon 4 / perun virtual payment and state channel networks
Duration: 00:24:49
Speaker: Kristina Hostakova, Lisa Eckey, Sebastian Faust, Stefan Dziembowski
Type: Talk
Expertise: Intermediate
Event: Devcon
Date: Invalid Date
Categories
Raiden Network: Getting to a production ready payment channel network
The Raiden Network is the payment channel network for Ethereum aiming to help scale Ethereum payment and all Dapps that utilize Ethereum for payments and rely on no on-chain side effects of the payments. There will be a small explanation of what is payment channels and a payment channel network, an explanation of the raiden network protocol and a demo of using Raiden (hopefully by then live on the mainnet). We will close with future plans, expansion of the protocol and showcasing potential applications.
Scalable Blockchains & Asynchronous Programming
Ethereum's Vitalik Buterin presents on scalability and asynchronous programming.
FunFair Technologies' Fate Channels: Lessons learned Implementing State Channels
Jeremy Longley, CTO of FunFair Technologies, will offer a post-mortem on the delivery of their own version of state channels, Fate Channels, to Mainnet. There have been significant challenges along the way, and there's likely to be many more to come as their use scales up. Having deployed a flexible and creative approach, Jeremy will outline how others can bypass these challenges and embrace state channels as best they can.
PISA: Arbitration Outsourcing for State Channels
PISA alleviates the "always online assumption" for all channel protocols and it is necessary for Raiden, L4, Perun, etc. State channels are a leading approach for improving the scalability of blockchains and cryptocurrencies. They allow a group of distrustful parties to optimistically execute an application-defined a program amongst themselves, while the blockchain serves as a backstop in case of a dispute or abort. This effectively bypasses the congestion, fees and performance constraints of the underlying blockchain in the typical case. However, state channels introduce a new and undesirable assumption that a party must remain on-line and synchronised with the blockchain at all times to defend against execution fork attacks. An execution fork can revert a state channel’s history, potentially causing financial damage to a party that is innocent except for having crashed. To provide security even to parties that may go offline for an extended period of time, we present Pisa, a protocol which enables such parties to delegate to a third party, called the custodian, to cancel execution forks on their behalf. To evaluate Pisa, we provide a proof-of-concept implementation for a simplified Sprites and we demonstrate that it is cost-efficient to deploy on the Ethereum network. Blog+Paper: http://hackingdistributed.com/2018/05/22/pisa/
A Fast and Scalable Blockchain for Enterprise Users
Almost every bank and major financial institution inChina as well as across the world is eager to revamp their computing infrastructure through blockchain. What a blockchain designed for them should look like? Is it enough to replace PoW with PBFT? What else can we do to leverage the resources enterprise users have? You will find the answers in CITA.
MEV Capturing AMMs(McAMMs)
A prevailing thought is that the power of transaction ordering is mostly in the hands of block-builders in the current MEV-Boost and PBS specifications. This talk will present a new AMM design, which could shift the transaction ordering power, at least partly, to AMM designers and liquidity providers. These constructions would allow AMMs to capture part of the MEV that is currently only harvested by block-builders and proposers.
Less Gas, More Fun: Optimising Smart Contracts through Yul
Due to the relative simplicity of the Ethereum Virtual Machine, it is possible to perform heavy analyses in order to optimize bytecode. The jump operations are a main obstacle for this, because they might require a preservation of all basic blocks in the worst case. To overcome this, Solidity's new optimizer operates on an intermediate language called Yul, which is close to EVM bytecode (and also wasm) but abstracts jump operations through real function calls. Each of the many optimizing operations are simple local equivalence transforms whose effects can be inspected at any time and which in combination should be both more reliable and efficient than the classic optimizer.
State Channels on Ethereum with Counterfactual
State channels are a critical "layer 2" scaling technology for ethereum. State channels let users conduct "off chain" transactions rapidly, without waiting for blockchain latency, but with each transaction still considered a "final" transfer of digital value or other valuable "state". However, they are difficult to engineer - today, many dapp developers have had to "roll their own" channels. Counterfactual aims to make it easy for developers to use channels in their applications, and get started making secure, scalable, performant ethereum dapps today. This talk will cover: - Overview of state channels technology - Introduction to the Counterfactual framework - How developers can get started using Counterfactual today
Turbo-Geth: optimising Ethereum clients
As Ethereum network becomes gets more and more use, the load on the system grows, and the scalability becomes the primary concern. While concepts like Plasma, State Channels, and Sharding offer medium to long term solutions, client software optimisation have a potential to create enough runway in the short term. Turbo-Geth is an experiment to challenge various design choices made in major Ethereum clients and see the outcome. It is currently a fork of go-ethereum, but hopefully the insights are applicable to other client implementations too. This presentation will report on main experiments, findings, benchmarks, and the current state of Turbo-Geth project.
Practical Plasma: Gaming
Talk will explore how Plasma Cash is changing the blockchain gaming landscape. Viewers will come away with a strong understanding of how to add advanced functionality like real time battles and crosschain token transfers to their existing games. Also we will explore how Plasma Cash enables use of sidehains to speed up gaming. What are the UI/UX difficulties of Plasma Cash? What would having wallets on multiple chains look like. Can we have automatic sign transactions for users? First we will delve deeper into L2 solutions like sidechain and state channels. We will see how plasma cash enables token transfers to sidechains, enabling the game to be fully run on the secondary layer. We will compare from a high level some common L2 solutions. We will walk through the UI/UX choices, how existing wallets interact with Plasma contracts. Then we we will delve into the tradeoffs in UI to speed. Finally we will tie everything together, by showing a working game that uses plasma, on a sidechain. So the audience can get the feel of what the end result of all this work would look like. What kind of games are possible and open up ideas for their future titles.