Plural Publics

cooperation across social difference

Shrey Jain
Web3 Researcher, Microsoft
All images in this talk are generated by DALLE-2.
A Riff on The Source Code Theorem
Cultural communities minimize the number of bits needed to communicate within the group.
Speaking the language does NOT mean you are “in” the group.
We are unable to preserve richness of communication during translation across differences today.
Plural Publics

Shrey Jain

Web3 Research, Microsoft

Joint work with Glen Weyl, Yorke Rhodes, and Divya Siddarth
John Dewey

Walter Lippmann

danah boyd

Joseph Halpern
Cooperation across social differences
Cooperation across social differences
Common Knowledge
Common Knowledge

Everyone knows that φ is true,

Everyone knows that everyone knows that φ is true,

Everyone knows that everyone knows that everyone knows that φ is true.

and so on, ad infinitum.
Coordinated Attack Problem
Coordinated
Attack Problem

“Attack at 6am”
Coordinated Attack Problem

“Ok”

“Attack at 6am”
Common knowledge is **not** attainable in systems where communication is **not** guaranteed.
Common knowledge is **not** attainable in systems where communication is **not** guaranteed.

Aim to attain strong forms of common-p belief.
Coordination

A set of agents take action simultaneously.
Coordination

A set of agents take action simultaneously.

Cooperation

A set of agents take action simultaneously and understand the payoffs that come with actions taken.
Cooperation

Altruism

Mutualism
Cooperation

Altruism: a cooperator confers a benefit at a cost to themselves
- Challenge to psychologists is how humans surmount this cost
- Measuring a suite of emotions like trust, empath, anger, etc.

Mutualism
Cooperation

Altruism: a cooperator confers a benefit at a cost to themselves
- Challenge to psychologists is how humans surmount this cost
- Measuring a suite of emotions like trust, empath, anger, etc.

Mutualism: each cooperator confers a benefit on the other while simultaneously conferring a benefit on themselves
- Purely an *epistemological* challenge: measuring the knowledge someone else has
- Humans can categorize when someone has common knowledge
- Probability of action is significantly higher when common knowledge is attained
<table>
<thead>
<tr>
<th>Common p-belief</th>
<th>Privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>Common p-belief</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Oral</td>
<td>Weak</td>
</tr>
<tr>
<td>Writing</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>Full message is sent</td>
</tr>
<tr>
<td></td>
<td>Common p-belief</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>Oral</td>
<td>Weak</td>
</tr>
<tr>
<td>Writing</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>Full message is sent</td>
</tr>
<tr>
<td>Envelopes</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>Full message is sent</td>
</tr>
<tr>
<td>Common p-belief</td>
<td>Privacy</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Oral</td>
<td>Weak</td>
</tr>
<tr>
<td>Writing</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>Full message is sent</td>
</tr>
<tr>
<td>Envelopes</td>
<td>Weak</td>
</tr>
<tr>
<td></td>
<td>Full message is sent</td>
</tr>
<tr>
<td>SMTP, SMS, XMPP</td>
<td>Stronger but not sufficient</td>
</tr>
</tbody>
</table>
DLTs are the next step in the progress of communication

1. DLTs have an easier interface to attain common-p belief
2. DLTs and blockchains enable us to provide commitment
Save $50 M/y in supply chain using a blockchain to communicate
We lack a commitment to knowledge.
Cooperation across social differences
Recognition

A Plural Decentralized Identity Frontier: Abstraction v. Composability
Tradeoffs in Web3

Shrey Jain
University of Toronto
shreyjaineth@gmail.com

Leon Erichsen
Gitcoin
leon@gitcoin.co

Glen Weyl
Microsoft, RadicalXChange
glen@radicalxchange.org
Context Collapse

- Used to have strong tribal bonds
- Communicate to invisible audiences today
- We have individual disclosure but lack collective disclosure
Designated Verifier Proofs

Instead of proving X,

Alice will prove the statement "Either X is true or I am Bob."
Mitigate Probability Double Agents

Both groups want to prevent agents from spying on themselves.
Mitigate Probability Double Agents

Agent A wants to turn on the CIA & work for KGB, but the CIA doesn’t know this.
Mitigate Probability Double Agents

“Agent A is part of the CIA”

Does the KGB believe Agent A? How can we, the CIA, mitigate the persuasiveness of this claim?
Designated Verifier Proof
Designated Verifier Proof

CIA DAO
“Agent A is part of the CIA”

ECSAVerifyNo
PubKeyCheck

0/1

OR

1/0 + proof

r[k]

s[k]

msghash[k]

pubkey[2][k]
Designated Verifier Proof

CIA DAO
“Agent A is part of the CIA”

r[k]

s[k]

msghash[k]

pubkey[2][k]

ECSAVerifierNo
PubKeyCheck

0/1

OR

1/0 + proof
Designated Verifier Proof

CIA DAO
"Agent A is part of the CIA"

Private Key
Agent A Public Address

r[k]
s[k]
msg hash[k]
pubkey[2][k]

ECSAVerifyNo
PubKeyCheck

PrivKey
ToAddr
Computed Address

0/1

PrivKey
ToAddr
Computed Address

0/1

IsEqual

1/0 + proof
Designated Verifier Proof

CIA DAO

"Agent A is part of the CIA"

- $r[k]$
- $s[k]$
- $\text{msghash}[k]$
- $\text{pubkey}[2][k]$

$\text{ECSAVerifyNoPubKeyCheck}$

$0/1$

OR

$1/0 + \text{proof}$
Designated Verifier Proof

CIA DAO

"Agent A is part of the CIA"

Private Key

Agent A Public Address

r[k]

s[k]

msghash[k]

pubkey[2][k]

ECSA VerifiyNo PubKey Check

0/1

OR

0/1

1/0 + proof

PrivKey ToAddr

Computed Address

IsEqual
You can't prevent someone from sharing information.

However, you can prevent someone from making that information be persuasive in its shared form!
You can't prevent someone from sharing information.

However, you can prevent someone from making that information be persuasive in its shared form!

Collective Disclosure
DAO creates a DVP to each member’s public address.

DVP for each member says “We have a secret X”

Timestep #1: DAO wants to share information with its DAO members.

Only DAO members and the DAO itself are persuaded by the DAO’s claim about secret X. Any entity outside of the DAO is not persuaded.
DAO creates a DVP to each member’s public address.

DVP for each member says “We have a secret X”

Timestep #2: DAO wants to share information with another entity.

If > threshold of members agree for this proposal to pass, proceed for the DAO to issue the DVP below.

DAO Intelligence Proposal
Should entity D be aware of secret X?

DAO creates a DVP to each member’s public address.

DVP for each member says “We have a secret X”
Open-Source Foundations

Designated Verifier Signatures

We have individual minimal disclosure. Designated Verifier Proofs (DVPs) enable collective minimal disclosure. In doing so, we can maintain the integrity of information within a set of selected agents. This repository is designed to enable people to build DVPs into their social applications and can be done both on and off-chain. It is designed to be compatible for EVM based applications.
The State Today

- We lack systems to attain common-p belief
- We lack systems to provide context
- We need boundaries
What we can build?

- DVP protocol for DAO intelligence
- Commitment schemes
- Tools for anonymous reporting
- Collective action protocols for social movements
Let’s interweave cryptographic primitives with cultural communities!
Thank you!

Shrey Jain
Web3 Researcher, Microsoft
shreyjaineth@gmail.com
@shreyjaineth