
How to hash a Merkle Tree

Potuz
Prysmatic Labs

SHA 256 Basics

Section 1

SHA 256 Basics
● Break into 64 bytes chunks
● Schedule 64 dwords (4 bytes)

○ W0,...,W15 are the message
○ Wi,...,Wi+15 are computed in terms

of Wi-16,...,Wi-1.
● Start with an incoming digest of 8

dwords (a0,...,h0)
● Roundi takes 10 dwords

(ai,...,hi; Wi,Ki) and returns
(ai+1,...,hi+1).

● incoming digest for next chunk:
(a0,...,h0) + (a63,...,h63) Credits: Josh Lake

Message scheduling

σ0(W) = ROR7(W)∧ROR18(W)∧SHR3(W)

σ1(W) = ROR17(W)∧ROR19(W)
∧SHR10(W)
● Compute 4 words at a time
● Can be done in parallel to rounds
● Does not depend on previously

processed chunks.

Rounds
● Incoming:

○ Status 8 dwords
(an,bn,...,gn,hn)

○ Constant Kn
○ Scheduled word Wn

● Outcoming:
○ Status 8 dwords

(hn+1,an+1...,fn+1,gn+1
)

● Depends on previous steps.
● Depends on Scheduled words

The padding Block

The last block contains the length of the message as a little
endian uint64. This length occupies the last 64 bits of the last
512bits (64 bytes block). A bit 1 is added after the last bit of the
message, to signal its end.

Vectorization

● Word scheduling can be done in parallel
● AVX can schedule 4 dwords at a time
● AVX2 can schedule 8 dwords at a time
● AVX-512 can schedule 16 dwords at a

time
● AVX-1024 …
● SIMD instructions can be interleaved with

arithmetic ones for better pipelining
● Rounds have to be scalar

Hasher signature

func hash(message []byte) [32]byte

def hash(data:bytes) -> Bytes32

pub fn hash(input: &[u8]) -> [u8; HASH_LEN]

Merkle Trees

Section 2

Parallelization + Fixed Size blocks

● Each node is a 256bit hash
● Each node is the digest of

hashing the concatenation of
its two children (512bits)

● Siblings can be computed in
parallel

Implementations

 def merkle_root(self) -> Root:
 if self._root is not None:
 return self._root
 self._root = merkle_hash(self.left.merkle_root(), self.right.merkle_root())
 return self._root

def merkle_tree(leaves: Sequence[Bytes32]) -> Sequence[Bytes32]:
 bottom_length = get_power_of_two_ceil(len(leaves))
 o = [Bytes32()] * bottom_length + list(leaves) + [Bytes32()] * (bottom_length - len(leaves))
 for i in range(bottom_length - 1, 0, -1):
 o[i] = hash(o[i * 2] + o[i * 2 + 1])
 return o

Implementations

func NewUsing(data [][]byte, hash HashType, salt bool) (*MerkleTree, error) {
 …

for i := len(data) + branchesLen; i < len(nodes); i++ {
nodes[i] = make([]byte, hash.HashLength())

}
// Branches
for i := branchesLen - 1; i > 0; i-- {

nodes[i] = hash.Hash(nodes[i*2], nodes[i*2+1])
}

tree := &MerkleTree{
salt: salt,
hash: hash,
nodes: nodes,
data: data,

}

return tree, nil
}

The right way to hash a Merkle Tree

Section 3

0b100000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
000000000000000001000000

The padding block is known,
so we can hardcode the
scheduled words W0,...,W63
~20%-30% gain.

Vectorization
● AVX can hash 4 blocks at a time (128bit)
● AVX2 can hash 8 blocks at a time (256bit)
● AVX-512 can hash 16 blocks at a time
● AVX-1024…

● ARM NEON is faster than scalar hashing
● AVX-512 is faster than crypto extensions

Hasher signature

func hash(message []byte) [][32]byte

def hash(data:bytes) -> Sequence[Bytes32]

pub fn hash(input: &[u8]) -> Vec<[u8; HASH_LEN]>

void hash(unsigned char* out,
const unsigned char* in,
uint64_t count)

Thank you!
Potuz

Prysmaticlabs
potuz@prysmaticlabs.com

https://github.com/prysmaticlabs/hashtree
https://github.com/prysmaticlabs/gohashtree

