
1Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Building secure contracts: How to
fuzz like a pro

Josselin Feist, Gustavo Grieco
Trail of Bits

2Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Before starting
● git clone https://github.com/crytic/building-secure-contracts

● git checkout devcon

https://github.com/crytic/building-secure-contracts

3Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Building secure contracts:
How to fuzz like a pro

4Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Who are we?
● Gustavo Grieco
● Josselin Feist (@montyly)

● Trail of Bits: trailofbits.com
○ We help developers to build safer software
○ R&D focused: we use the latest program analysis techniques
○ Slither, Echidna, Tealer, Amarna, solc-select, ..

https://twitter.com/montyly
https://www.trailofbits.com/

5Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Agenda
● How to find bugs?

● What is property based testing?

● Exercises: simple and more advanced fuzzing

● How to define good invariants?

● Comparison with similar tools

6Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?
/// @notice Allow users to buy token. 1 ether = 10 tokens
/// @param tokens The numbers of token to buy
/// @dev Users can send more ether than token to be bought, to give gifts to the
team.
function buy(uint tokens) public payable{
 _valid_buy(tokens, msg.value);
 _mint(msg.sender, tokens);
}

/// @notice Compute the amount of token to be minted. 1 ether = 10 tokens
/// @param desired_tokens The number of tokens to buy
/// @param wei_sent The ether value to be converted into token
function _valid_buy(uint desired_tokens, uint wei_sent) internal view{
 uint required_wei_sent = (desired_tokens / 10) * decimals;
 require(wei_sent >= required_wei_sent);
}

7Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?

● 4 main techniques
○ Unit tests

○ Manual analysis

○ Fully automated analysis

○ Semi automated analysis

8Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?

● Unit tests

○ Benefits

■ Well understood by developers

○ Limitations

■ Mostly cover “happy paths”

■ Might miss edge cases

9Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find bugs?
function test_buy(uint256 tokens_to_receive, uint256 ether_to_send) public {

 uint256 pre_buy_balance = token.balanceOf(address(this));

 mock.buy.call{value: ether_to_send)(tokens_to_receive);

 assert(token.balanceOf(address(this)) == pre_buy_balance + tokens_to_receive)

}

10Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?

● Manual review

○ Benefits
■ Can detect any bug

○ Limitations
■ Time consuming

■ Require specific skills

■ Does not track code changes

○ Example: Security audit

11Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?

● Fully automated analysis

○ Benefits

■ Quick & easy to use

○ Limitations

■ Cover only some class of bugs

○ Example: Slither

https://github.com/crytic/slither

12Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Slither Action

13Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?

● Semi automated analysis

○ Benefits

■ Great for logic-related bugs

○ Limitations

■ Require human in the loop

○ Example: Property based testing with Echidna

https://github.com/crytic/echidna

14Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

What is property based testing?

15Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Fuzzing

● Stress the program with
random inputs
○ Most basic fuzzer: randomly

type on your keyboard
● Fuzzing is well established in

traditional software security
○ AFL, Libfuzzer, go-fuzz, ..

16Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Property based testing

● Traditional fuzzers generally detect crashes
○ Smart contracts don’t (really) have crashes

● Property based testing
○ User defines invariants
○ Fuzzer generates random inputs
○ Check whether specified “incorrect” state can be reached

● “Unit tests on steroids”

17Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Invariant

● Something that must
always be true

18Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Echidna

● Smart contract fuzzer
● Open source:

github.com/crytic/echidna
● Heavily used in audits & mature

codebases
● Focused in easy to use

○ Solidity invariants
○ Github action
○ All compilation frameworks

https://github.com/crytic/echidna

19Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Invariant - Token’s total supply
pragma solidity 0.7.0;

contract Token{

 mapping(address => uint) public balances;

 function transfer(address to, uint value) public{

 balances[msg.sender] -= value;

 balances[to] += value;

 }

 }

20Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Invariant - Token’s total supply

User balance never exceeds total supply

21Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Echidna - Overview

contract Token {
uint256 totalSupply;
mapping (address => uint256) balances;
function transfer(address to, uint256 amount) {
}

}

Smart Contract Code

function echidna_invariant() public returns(bool)

Property Invariant

Can Echidna break
the invariant?

Echidna Tests
input

22Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercises

23Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1
● git clone https://github.com/crytic/building-secure-contracts
● git checkout devcon
● Open program-analysis/echidna/Exercise-1.md

Goal: check if total supply invariant holds

Notes:

● Use Solidity 0.7 (see solc-select if needed)
● Try without the template!

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-1.md

24Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Target

25Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Template
contract TestToken is Token {

 address echidna_caller = msg.sender;

 constructor() public {
 balances[echidna_caller] = 10000;
 }

 // add the property

}

26Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Solution
contract TestToken is Token {

 address echidna_caller = msg.sender;

 constructor() public {
 balances[echidna_caller] = 10000;
 }

 function echidna_test_balance() view public returns(bool) {
 return balances[echidna_caller] <= 10000;
 }
}

27Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Solution

$ echidna-test solution.sol

28Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Solution

29Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2
● git clone https://github.com/crytic/building-secure-contracts

● git checkout devcon

● Open program-analysis/echidna/Exercise-2.md

Goal: can you unpause the system?

Note: try without the template!

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-1.md

30Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2 - Target

31Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2 - Solution
contract TestToken is Token {

 constructor() {
 paused();
 owner = 0x0; // lose ownership
 }

 // add the property
}

32Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2 - Solution

contract TestToken is Token {

 constructor() {
 paused();
 owner = 0x0; // lose ownership
 }

 function echidna_no_transfer() view returns(bool) {
 return is_paused == true;
 }
}

33Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2 - Solution

$ echidna-test solution.sol

34Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2 - Solution

35Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to define good invariants

36Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Defining good invariants
● Start small, and iterate

● Steps

1. Define invariants in English

2. Write the invariants in Solidity

3. Run Echidna

■ If invariants broken: investigate

■ Once all the invariants pass, go back to (1)

37Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Identify invariants

● Start early, before starting to

code

● Sit down and think about what

the contract is supposed to do

● Write the invariant in plain

English

38Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Identify invariants: Maths
● Math library

○ Commutative property

■ 1 + 2 = 2 + 1

○ Identity property

■ 1 * 2 = 2

○ Inverse property

■ x + (-x) = 0

39Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Identify invariants: tokens
● ERC20.total_supply

○ No user should have a balance > total_supply
● ERC20.transfer:

○ After calling transfer
■ My balance should have decreased by the amount
■ The receiver’s balance should have increased by the amount

40Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Identify invariants: tokens
● ERC20.total_supply

○ No user should have a balance > total_supply
● ERC20.transfer:

○ After calling transfer
■ My balance should have decreased by the amount
■ The receiver’s balance should have increased by the amount
■ If the destination is myself, my balance should be the same

41Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Identify invariants: tokens
● ERC20.total_supply

○ No user should have a balance > total_supply
● ERC20.transfer:

○ After calling transfer
■ My balance should have decreased by the amount
■ The receiver’s balance should have increased by the amount
■ If the destination is myself, my balance should be the same

○ If I don’t have enough funds, the transaction should revert/return
false

42Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Write invariants in Solidity
● Identify the target of the invariant

○ Function-level invariant
■ Ex: arithmetic associativity
■ Usually stateless invariants
■ Can craft scenario to test the invariant

○ System-level invariant
■ Ex: user’s balance < total supply
■ Usually stateful invariants
■ All functions must be considered

43Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Function-level invariant
● Inherit the targets
● Create function and call the targeted function
● Use assert to check the property

contract TestMath is Math{
 function test_commutative(uint a, uint b) public {
 assert(add(a, b) == add(b, a));
 }
}

44Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

● Require initialization
○ Simple initialization: constructor
○ Complex initialization: leverage your unit tests framework with

etheno
● Echidna will explore all the other functions

System level invariant

https://github.com/crytic/etheno

45Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo

46Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo

/// @notice Allow users to buy token. 1 ether = 10 tokens
/// @param tokens The numbers of token to buy
/// @dev Users can send more ether than token to be bought, to give gifts to the
team.
function buy(uint tokens) public payable{
 _valid_buy(tokens, msg.value);
 _mint(msg.sender, tokens);
}

/// @notice Compute the amount of token to be minted. 1 ether = 10 tokens
/// @param desired_tokens The number of tokens to buy
/// @param wei_sent The ether value to be converted into token
function _valid_buy(uint desired_tokens, uint wei_sent) internal view{
 uint required_wei_sent = (desired_tokens / 10) * decimals;
 require(wei_sent >= required_wei_sent);
}

47Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo
● buy is stateful
● _valid_buy is stateless

○ Start with it

48Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo
● What invariants?

function _valid_buy(uint desired_tokens, uint wei_sent) internal view{
 uint required_wei_sent = (desired_tokens / 10) * decimals;
 require(wei_sent >= required_wei_sent);
}

49Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo
● What invariants?

○ If wei_sent is zero, desired_tokens must be zero

function _valid_buy(uint desired_tokens, uint wei_sent) internal view{
 uint required_wei_sent = (desired_tokens / 10) * decimals;
 require(wei_sent >= required_wei_sent);
}

50Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo
function assert_no_free_token(uint desired_amount)
public {
 require(desired_amount > 0);
 _valid_buy(desired_amount, 0);
 assert(false); // this should never be reached
}

51Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo

<Demo>

52Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Echidna APIs

53Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Echidna APIs
● Boolean properties
● Assertion
● Dapp/foundry API

https://github.com/crytic/building-secure-contracts/blob/master
/program-analysis/echidna/testing-modes.md

https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/testing-modes.md
https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/testing-modes.md

54Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Boolean properties
● Most of our examples so far - default mode
● echidna_something() returns(bool)
● Benefits

○ Easy to use
○ Invariants easy to find
○ No side effects are kept

● Limitations
○ No parameters
○ Revert is a failure
○ No coverage on echidna_something

55Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Assertion
● Solidity assert()
● Benefits

○ Simpler for function introspection
○ Code coverage

● Limitations
○ Difficult to use if the codebase misuse assert
○ Must be careful where the assert are added to not break the original code

56Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Dapp/foundry
● setUp() + checking for reverting function
● Benefits

○ Compatible with foundry
● Limitations

○ Require to handle reverts (e.g. using FOUNDRY::ASSUME)
○ No support for pranks

57Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 4(*) - Assertion
● git clone https://github.com/crytic/building-secure-contracts
● git checkout devcon
● Open program-analysis/echidna/Exercise-4.md

● Goal: check if total supply invariant holds with assertion

First: try without the template!

(*) - no exercise 3 today

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-4.md

58Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 4 - Solution
contract Token is Pausable {
 mapping(address => uint256) public balances;

 function transfer(address to, uint256 value) public ifNotPaused {
 uint256 initial_balance_from = balances[msg.sender];
 uint256 initial_balance_to = balances[to];

 balances[msg.sender] -= value;
 balances[to] += value;

 assert(balances[msg.sender] <= initial_balance_from);
 assert(balances[to] >= initial_balance_to);
 }
}

59Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Composability

60Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Multi Abi
● By default, Echidna focuses on one contract
● Enable the multi-abi allows Echidna to work on composability

issue:
○ Use command-line flag --multi-abi
○ Or use multi-abi: true in the config file

61Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Damn-Vulnerable-Defi
● git clone https://github.com/crytic/building-secure-contracts
● git checkout devcon
● Open program-analysis/echidna/Exercise-5.md

● Goal: let echidna solves the NaiveReceiver challenge

First: try without the hints

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-5.md

62Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Description
● Two contracts

○ NaiveReceiverLenderPool: allow to take a flash loan for a fee
○ FlashLoanReceiver: user’s contract taking flash loan

● The user deploys a FlashLoanReceiver with 10 eth. Can you
drain the funds?

63Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Target (NaiveReceiverLenderPool)

64Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Target (FlashLoanReceiver)

65Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Initialization

66Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Solution

● Config file

10,000 ether is placed in the NaiveReceiverEchidna
contract.
balanceContract: 10000000000000000000000
Allow for multi-abi use
multi-abi: true

67Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Solution
 // We will send ETHER_IN_POOL to the flash loan pool.
 uint256 constant ETHER_IN_POOL = 1000e18;
 // We will send ETHER_IN_RECEIVER to the flash loan receiver.
 uint256 constant ETHER_IN_RECEIVER = 10e18;

 // Setup echidna test by deploying the flash loan pool and receiver and sending them
some ether.
 constructor() payable {
 pool = new NaiveReceiverLenderPool();
 receiver = new FlashLoanReceiver(payable(address(pool)));
 payable(address(pool)).sendValue(ETHER_IN_POOL);
 payable(address(receiver)).sendValue(ETHER_IN_RECEIVER);
 }

 // We want to test whether the balance of the receiver contract can be decreased.
 function echidna_test_contract_balance() public view returns (bool) {
 return address(receiver).balance >= 10 ether;
 }

68Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Solution

69Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Solution
● Access controls issue

○ Anyone can trigger the flash loan on the user contract
○ An attacker can do flash loans on behalf of the receiver’s owner and drain

the funds through the fees

70Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Damn-Vulnerable-Defi
● git clone https://github.com/crytic/building-secure-contracts
● git checkout devcon
● Open program-analysis/echidna/Exercise-6.md

● Goal: let echidna solves the Unstoppable challenge

First: try without the hints

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-6.md

71Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Description
● Two contracts

○ UnstoppableLender: allow to take a flash loan and do a callback on the
caller

○ ReceiverUnstoppable: user callback example
● Can you prevent UnstoppableLender from working?

72Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Target (UnstoppableLender)

73Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Initialization

74Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Initialization

75Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Solution

● Config file

The deployer and sender must be the same for this example.

The deployer is the 'attacker' and is sent INITIAL_ATTACKER_BALANCE

The actual value does not matter, as long as they are the same

deployer: '0x30000'

Sender must be the same so that it can use the attacker balance to try to break

the invariant.

sender: ['0x30000']

Allow for multi-abi use

multi-abi: true

76Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Solution
// We will send ETHER_IN_POOL to the flash loan pool.
uint256 constant ETHER_IN_POOL = 1000000e18;
// We will send INITIAL_ATTACKER_BALANCE to the attacker (which is the deployer)
of this contract.
uint256 constant INITIAL_ATTACKER_BALANCE = 100e18;

DamnValuableToken token;
UnstoppableLender pool;

// Setup echidna test by deploying the flash loan pool, approving it for token
transfers, sending it tokens, and sending the attacker some tokens.
constructor() public payable {
 token = new DamnValuableToken();
 pool = new UnstoppableLender(address(token));
 token.approve(address(pool), ETHER_IN_POOL);
 pool.depositTokens(ETHER_IN_POOL);
 token.transfer(msg.sender, INITIAL_ATTACKER_BALANCE);
}

77Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Solution
// This is the callback function for flash loan receivers.
function receiveTokens(address tokenAddress, uint256 amount) external {
 require(msg.sender == address(pool), "Sender must be pool");
 // Return all tokens to the pool
 require(
 IERC20(tokenAddress).transfer(msg.sender, amount),
 "Transfer of tokens failed"
);
}

// This is the Echidna property entrypoint.
// We want to test whether flash loans can always be made.
function echidna_testFlashLoan() public returns (bool) {
 pool.flashLoan(10);
 return true;
}

78Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Solution

79Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 6 - Solution
● The pool require an exact balance equality - sending token to

directly to the pool will break this requirements

80Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Comparison with similar tools

81Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Other fuzzers
● Inbuilt in dapp, brownie, foundry, ..
● Might be easier for simple test, however

○ Less powerful
○ Require specific compilation framework

82Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Formal methods based approach
● Manticore, KEVM, Certora, ..
● Provide proofs, however

○ More difficult to use
○ Return on investment is significantly higher with fuzzing

83Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Echidna’s advantages
● Echidna has unique additional advanced features

○ Can target high gas consumption functions
○ Differential fuzzing
○ Works with any compilation framework
○ Different APIs

■ Boolean property, assertion, dapptest/foundry mode, …

● Free & open source

84Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Conclusion

85Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Conclusion
● https://github.com/crytic/echidna
● To learn more: github.com/crytic/building-secure-contracts
● Start by writing invariants in English, then write Solidity properties

○ Start simple and iterate
● Your mission

○ Try Echidna on your current project

ToB is hiring (https://jobs.lever.co/trailofbits)

● Security Consultants & Apprentices
● The road to the apprenticeship blogpost

https://github.com/crytic/echidna
https://github.com/crytic/building-secure-contracts
https://jobs.lever.co/trailofbits
https://blog.trailofbits.com/2022/08/12/the-road-to-the-apprenticeship/

86Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Additional slides

87Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Where to focus?

88Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Where to focus?
● In practice: you don’t know where the bugs are
● Code coverage vs behavior coverage

○ Cover as many functions as possible or;
○ Focus on specific components?

89Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

● Try different strategies
○ Behavior coverage first

■ Focus on 1 or 2 components
○ Code coverage first

■ Cover many functions with simple properties
○ Alternate: 1 day on behavior coverage, then 1 day on code coverage,

…
○ No right or wrong approach: try and see what works for you

Where to focus?

90Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

● Start simple, then think about composition, related behaviors,
etc…
○ Can transfer and transferFrom be equivalent?

■ transfer(to, value) ?= transferFrom(msg.sender, to,
value)

○ Is transfer additive-like?
■ transfer(to, v0), transfer(to, v1) ?= transfer(to, v0 +

v1)?

Where to focus?

91Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

● Start simple, then think about composition, related behaviors,
etc…
○ Can transfer and transferFrom be equivalent?

■ transfer(to, value) ?= transferFrom(msg.sender, to,
value)

○ Is transfer additive-like?
■ transfer(to, v0), transfer(to, v1) ?= transfer(to, v0 +

v1)?
■ Spoiler: this won’t hold; why?

Where to focus?

92Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Where to focus?
● Building your own experience will make you more efficient over

time
● Learn on how to think about invariants is a key component to

write better code

