l(@'l

Bullding secure contracts: How to
fuzz like a pro

Josselin Feist, Gustavo Grieco
o fuzz Like a DroTrall Of BItS 1

Before starting

e git clone https://github.com/crytic/building-secure-contracts
e git checkout devcon

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 2

https://github.com/crytic/building-secure-contracts

Building secure contracts:
How to fuzz like a pro

Who are we”?

e Gustavo Grieco
e Josselin Feist (@montyly)

e Trail of Bits: trailofbits.com
o We help developers to build safer software
o R&D focused: we use the latest program analysis techniques
o Slither, Echidna, Tealer, Amarna, solc-select, ..

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 4

https://twitter.com/montyly
https://www.trailofbits.com/

Agenda

How to find bugs?

What is property based testing?

Exercises: simple and more advanced fuzzing
How to define good invariants?

Comparison with similar tools

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

H

How to Find Bugs?

/// @notice Allow users to buy token. 1 ether = 10 tokens
/// @param tokens The numbers of token to buy
/// @dev Users can send more ether than token to be bought, to give gifts to the
team.
function buy(uint tokens) public payable({
_valid_buy(tokens, msg.value);
_mint(msg.sender, tokens);

/// @notice Compute the amount of token to be minted. 1 ether = 10 tokens

/// @param desired_tokens The number of tokens to buy

/// @param wei_sent The ether value to be converted into token

function _valid_buy(uint desired_tokens, uint wei_sent) internal view({
uint required_wei_sent = (desired_tokens / 10) * decimals;
require(wei_sent >= required_wei_sent);

&

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 6

How to Find Bugs?

e 4 maintechniques
o Unit tests

o Manual analysis
o Fully automated analysis

o Semi automated analysis

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs?

e Unittests

o Benefits

m Well understood by developers
o Limitations

m Mostly cover “happy paths”

m Might miss edge cases

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find bugs?

function test_buy(uint256 tokens_to_receive, uint256 ether_to_send) public {
uint256 pre_buy_balance = token.balanceOf(address(this));
mock .buy.call{value: ether_to_send)(tokens_to_receive);

assert(token.balanceOf(address(this)) == pre_buy_balance + tokens_to_receive)

&

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 9

How to Find Bugs?

e Manual review

o Benefits

m Candetect any bug
o Limitations

m Time consuming

m Require specific skills

m Does not track code changes
o Example: Security audit

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

How to Find Bugs”?

e Fully automated analysis
o Benefits
m Quick & easy to use
o Limitations
m Cover only some class of bugs

o Example: Slither

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/slither

Slither Action

(® Actions [Projects 00 Wiki © Security [~ Insights 3 Settings

Add more scanning tools

Code scanning

Latest scan Branch Workflow Duration Result

1 minute ago main Slither Analysis 0s 3 alerts

Filters~ Q_ is:open branch:main

O @ 30pen v 9Closed Tool~ Branch~ Rule~ Severity~ Sort~
U Reentrancy vulnerabilities main
(Test) test.sol:8 « Detected 1 minute ago by Slither
U Unchecked low-level calls (vedium) main
(Test) test.sol:8 « Detected 1 minute ago by Slither
main

O Low-level calls A wamning
(Test) test.sol:8 « Detected 1 minute ago by Slither

12

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

&

How to Find Bugs”?

e Semiautomated analysis
o Benefits
m Great for logic-related bugs
o Limitations
m Require human in the loop

o Example: Property based testing with Echidna

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/echidna

What Is property based testing?

Fuzzing

e Stress the program with
random inputs
o Most basic fuzzer: randomly
type on your keyboard
e Fuzzingis well established in
traditional software security
o AFL, Libfuzzer, go-fuzz, ..

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Property based testing

e Traditional fuzzers generally detect crashes

o Smart contracts don't (really) have crashes
e Property based testing

o User defines invariants

o Fuzzer generates random inputs

o Check whether specified “incorrect” state can be reached
e “Unit tests on steroids”

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

INnvariant

e Something that must
always be true

Devcon 2022

Building Secure Contracts: How to fuzz Like a Pro

invariant adjective
@ Save Word

in-vari-ant | \(,)in—'ver—é—ent@\

Definition of invariant
: CONSTANT, UNCHANGING

specifically : unchanged by specified mathematical or physical
operations or transformations

// invariant factor

Echidna

e Smart contract fuzzer
Open source:
github.com/crytic/echidna
e Heavily used in audits & mature
codebases
e Focusedin easytouse
o Solidity invariants
o Github action
o All compilation frameworks

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Public use of Echidna

Property testing suites

This is a partial list of smart contracts projects that use Echidna for
testing:

e Uniswap-v3

» Balancer

o MakerDAO vest

« Optimism DAI Bridge
« WETH10

* Yield

» Convexity Protocol

« Aragon Staking

» Centre Token

» Tokencard

* Minimalist USD Stablecoin

https://github.com/crytic/echidna

Invariant - Token's total supply

pragma solidity 0.7.0;

contract Token({

mapping(address => uint) public balances;
function transfer(address to, uint value) public({
balances[msg.sender] -= value;

balances[to] += value;

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

&

Invariant - Token's total supply

User balance never exceeds total supply

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

20

&

Echidna - Overview

Smart Contract Code

-

contract Token {
uint256 totalSupply;
mapping (address => uint256) balances;
function transfer(address to, uint256 amount) {
}
}

_

~

input

)

Property Invariant

function echidna_invariant() public returns(bool)

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Echidna Tests

-

-

Can Echidna break
the invariant?

~

Exercises

Devcon 2022

Building Secure Contracts: How to fuzz Like a Pro

22

&

Exercise 1

e git clone https://github.com/crytic/building-secure-contracts

e git checkout devcon
e Open program-analysis/echidna/Exercise-1.md

Goal: check if total supply invariant holds

Notes:

e Use Solidity 0.7 (see solc-select if needed)
e Trywithout the template!

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-1.md

Exercise 1 - Target

contract Token is Pausable{
mapping(address => uint) public balances;
function transfer(address to, uint value) ifNotPaused public{
balances[msg.sender] -= value;
balances[to] += value;

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Template

contract TestToken is Token {

address echidna_caller = msg.sender;

constructor() public {
balances[echidna_caller] = 10000:
}

// add the property

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

25

&

Exercise 1 - Solution

contract TestToken is Token {

address echidna_caller = msg.sender;

constructor() public {
balances[echidna_caller] = 10000;
}

function echidna_test_balance() view public returns(bool) {
return balances[echidna_caller] <= 10000;
}

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 1 - Solution

$ echidna-test solution.sol

echidna_test_balance: FAILED! with ReturnFalse

Call sequence:
1.transfer(@x0,10093)

H

Exercise 1 - Solution

contract Token is Pausable{
mapping(address => uint) public balances;
function transfer(address to, uint value) ifNotPaused public{
balances[msg.sender] -= value;
balances[to] += value;

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 2

e git clone https://github.com/crytic/building-secure-contracts

e git checkout devcon
e Open program-analysis/echidna/Exercise-2.md

Goal: can you unpause the system?

Note: try without the template!

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-1.md

Exercise 2 - Target

contract Pausable is Ownershipf{
bool is_paused;

contract OwnerShlp{ modifier ifNotPaused(){

address owner = msg.sender; require(!is_paused);
function Owner(){ 3
owner = msg.sender; b
¥ o . function paused() isOwner public{
modifier isOwner(){ is_paused = true;
require(owner == msg.sender); }
—y
} function resume() isOwner public{
is_paused = false;
} }
}
Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

&

Exercise 2 - Solution

contract TestToken is Token {

constructor() {
paused() ;
owner = 0x0; // lose ownership

// add the property
Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

3]

&

Exercise 2 - Solution

contract TestToken is Token {

constructor() {
paused();
owner = 0x0; // lose ownership

function echidna_no_transfer() view returns(bool) {
return is_paused == true;
Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

32

&

Exercise 2 - Solution

$ echidna-test solution.sol

echidna_no_transfer: FAILED! with ReturnFalse

Call sequence:

1.0wner()
2 .resume()

H

Exercise 2 - Solution

contract Pausable is Ownershipf{
bool is_paused;

contract OwnerShlp{ modifier ifNotPaused(){

address owner = msg.sender; require(!is_paused);
function Owner(){ 3
owner = msg.sender; b
¥ o . function paused() isOwner public{
modifier isOwner(){ is_paused = true;
require(owner == msg.sender); }
—y
} function resume() isOwner public{
is_paused = false;
} }
}
Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

&

How to define good invariants

Defining good invariants

e Start small, and iterate
e Steps
1. Define invariants in English

2. Write the invariants in Solidity
3. Run Echidna

m [finvariants broken: investigate

m Once all the invariants pass, go back to (1)

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

|dentify invariants

e Start early, before starting to
code

e Sit down and think about what
the contract is supposed to do

e Write the invariant in plain

English

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

37

|dentify invariants: Maths

e Math library
o Commutative property
m 1+2=2+1
o ldentity property
m 1*%2=2
o Inverse property

m X+(-x)=0

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

38

&

|dentify invariants: tokens

e ERC20.total_supply
o No user should have a balance > total_supply
e ERC20.transfer:

o After calling transfer
m My balance should have decreased by the amount
m Thereceiver's balance should have increased by the amount

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

|dentify invariants: tokens

e ERC20.total_supply
o No user should have a balance > total_supply
e ERC20.transfer:

o After calling transfer
m My balance should have decreased by the amount
m Thereceiver's balance should have increased by the amount

m If the destination is myself, my balance should be the same

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 40

|dentify invariants: tokens

e ERC20.total_supply
o No user should have a balance > total_supply
e ERC20.transfer:

o After calling transfer
m My balance should have decreased by the amount
m Thereceiver's balance should have increased by the amount

m If the destination is myself, my balance should be the same
o If I don't have enough funds, the transaction should revert/return
false

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 41

Write invariants in Solidity

e Identify the target of the invariant

o Function-level invariant

m Ex: arithmetic associativity

m Usually stateless invariants

m Can craft scenario to test the invariant
o System-level invariant

m Ex: user's balance < total supply

m Usually stateful invariants

m All functions must be considered

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

42

H

Function-level invariant

e Inherit the targets
e Create function and call the targeted function
e Use assert to check the property

contract TestMath is Math{
function test_commutative(uint a, uint b) public {

assert(add(a, b) == add(b, a));

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

43

H

System level invariant

e Require initialization
o Simple initialization: constructor
o Complex initialization: leverage your unit tests framework with
etheno

e Echidna will explore all the other functions

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/etheno

Demo

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

45

&

Demo

/// @notice Allow users to buy token. 1 ether = 10 tokens
/// @param tokens The numbers of token to buy
/// @dev Users can send more ether than token to be bought, to give gifts to the
team.
function bug(uint tokens) public payable({
_valid_buy(tokens, msg.value);
_mint(msg.sender, tokens);

}

/// @notice Compute the amount of token to be minted. 1 ether = 10 tokens
/// @param desired_tokens The number of tokens to buy

/// @param wei_sent The ether value to be converted into token

function _valid_buy(uint desired_tokens, uint wei_sent) internal view({

uint required_wei_sent = (desired_tokens / 10) * decimals;
require?wei_sent >= required_wei_sent);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 46

Demo

e buyis stateful

e _val

id_buy is stateless

o Start with it

Devcon 2022 |

Building Secure Contracts: How to fuzz Like a Pro

47

&

Demo

e What invariants?

function _valid_buy(uint desired_tokens, uint wei_sent) internal view({
uint required_wei_sent = (desired_tokens / 10) * decimals;
require(wei_sent >= required_wei_sent);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 48

&

Demo

e Whatinvariants?
o Ifwei_sent s zero, desired_tokens must be zero

function _valid_buy(uint desired_tokens, uint wei_sent) internal view({
uint required_wei_sent = (desired_tokens / 10) * decimals;
require(wei_sent >= required_wei_sent);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 49

&

Demo

function assert_no_free_token(uint desired_amount)
public {
require(desired_amount > 0);
_valid_buy(desired_amount, 0);
assert(false); // this should never be reached

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Demo

Jest$m—m——
assertion in assert_no_free_token(uint256): with ErrorUnrecognizedOpc

Call sequence:
1.assert_no_free_token(1)

H

Echidna APIs

Devcon 2022

Building Secure Contracts: How to fuzz Like a Pro

52

&

Echidna APls

e Boolean properties
e Assertion
e Dapp/foundry API

https:/qithub.com/crytic/building-secure-contracts/blob/master
/program-analysis/echidna/testing-modes.md

&

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 53

https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/testing-modes.md
https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/testing-modes.md

Boolean properties

e Most of our examples so far - default mode
e echidna_something() returns(bool)

e Benefits
o [Easyto use
o Invariants easy to find
o No side effects are kept
e Limitations
o No parameters
o Revertis a failure
o No coverage on echidna_something

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Assertion

e Solidityassert()

e Benefits
o Simpler for function introspection
o Code coverage
e Limitations
o Difficult to use if the codebase misuse assert
o Must be careful where the assert are added to not break the original code

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 55

Dapp/foundry

e setUp() + checking for reverting function
e Benefits

o Compatible with foundry
e Limitations

o Require to handle reverts (e.g. using FOUNDRY::ASSUME)
o No support for pranks

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 4 - Assertion

e git clone https://github.com/crytic/building-secure-contracts

e git checkout devcon
e Open program-analysis/echidna/Exercise-4.md

e Goal: check if total supply invariant holds with assertion

First: try without the template!

(*) - no exercise 3 today

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-4.md

Exercise 4 - Solution

contract Token is Pausable {
mapping(address => uint256) public balances;

function transfer(address to, uint256 value) public ifNotPaused {
uint256 initial_balance_from = balances[msg.sender];
uint256 initial_balance_to = balances[to];

balances[msg.sender] -= value;
balances[to] += value;

assert(balances[msg.sender] <= initial_balance_from);
assert(balances[to] >= initial_balance_to);

Composability

Devcon 2022

Building Secure Contracts: How to fuzz Like a Pro

59

&

Multi Abi

e By default, Echidna focuses on one contract
e Enable the multi-abi allows Echidna to work on composability

issue:
o Use command-line flag --multi-abi
o Orusemulti-abi: true inthe config file

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 60

Exercise 5 - Damn-Vulnerable-Defi

e git clone https:/github.com/crytic/building-secure-contracts
e git checkout devcon
e Open program-analysis/echidna/Exercise-5.md

e Goal: let echidna solves the NaiveReceiver challenge

First: try without the hints

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 6l

&

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-5.md

Exercise 5 - Description

e Two contracts
o NaiveReceiverLenderPool: allow to take a flash loan for a fee
o FlashLoanReceiver: user’s contract taking flash loan

e The user deploys a FlashLoanReceiver with 10 eth. Can you
drain the funds?

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Target (NaiveReceiverLenderPool

function flashLoan(address borrower, uint256 borrowAmount) external nonReentrant {

uint256 balanceBefore = address(this).balance;
require(balanceBefore >= borrowAmount, "Not enough ETH in pool");

require(borrower.isContract(), "Borrower must be a deployed contract");
// Transfer ETH and handle control to receiver
borrower. functionCallwithValue(
abi.encodeWithSignature(
"receiveEther(uint256)",
FIXED_FEE
)y
borrowAmount
);

require(
address(this).balance >= balanceBefore + FIXED_FEE,
"Flash loan hasn't been paid back"

);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 63

&

Exercise 5 - Target (FlashLoanReceiver)

// Function called by the pool during flash loan
function receiveEther(uint256 fee) public payable {
require(msg.sender == pool, "Sender must be pool");
uint256 amountToBeRepaid = msg.value + fee;
require(address(this).balance >= amountToBeRepaid, "Cannot borrow that much");

_executeActionDuringFlashLoan();

// Return funds to pool
pool.sendValue(amountToBeRepaid);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

64

&

Exercise 5 - |nitialization

before(async function () {

1)

/** SETUP SCENARIO - NO NEED TO CHANGE ANYTHING HERE */
[deployer, user, attacker] = await ethers.getSigners();

const LenderPoolFactory = await ethers.getContractFactory('NaiveReceiverLenderPool’', deployer);
const FlashLoanReceiverFactory = await ethers.getContractFactory('FlashLoanReceiver', deployer);

this.pool = await LenderPoolFactory.deploy();
await deployer.sendTransaction({ to: this.pool.address, value: ETHER_IN_POOL });

expect(await ethers.provider.getBalance(this.pool.address)).to.be.equal(ETHER_IN_POOL);
expect(await this.pool.fixedFee()).to.be.equal(ethers.utils.parseEther('1'));

this.receiver = await FlashLoanReceiverFactory.deploy(this.pool.address);
await deployer.sendTransaction({ to: this.receiver.address, value: ETHER_IN_RECEIVER });

expect(await ethers.provider.getBalance(this.receiver.address)).to.be.equal(ETHER_IN_RECEIVER);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 65

&

Exercise 5 - Solution

e Config file

10,000 ether is placed in the NaiveReceiverEchidna
contract.

balanceContract: 10000000000000000000000

Allow for multi-abi use

multi-abi: true

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Exercise 5 - Solution

// We will send ETHER_IN_POOL to the flash loan pool.

uint256 constant ETHER_IN_POOL = 1000e18;

// We will send ETHER_IN_RECEIVER to the flash loan receiver.
uint256 constant ETHER_IN_RECEIVER = 10e18;

// Setup echidna test by deploying the flash loan pool and receiver and sending them
some ether.
constructor() payable {
pool = new NaiveReceiverlLenderPool();
receiver = new FlashLoanReceiver(payable(address(pool)));
payable(address(pool)).sendValue(ETHER_IN_POOL) ;
payable(address(receiver)).sendValue(ETHER_IN_RECEIVER);

}

// We want to test whether the balance of the receiver contract can be decreased.
function echidna_test_contract_balance() public view returns (bool) {
return address(receiver).balance >= 10 ether;

}

Exercise 5 - Solution

Tests
echidna_test_contract_balance: with ReturnFalse

Call sequence:
1.flashLoan(0x62d69f6867a0a084c6d313943dc22023bc263691,1000000000000000001)

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 68

Exercise 5 - Solution

e Access controls issue

o Anyone can trigger the flash loan on the user contract
o An attacker can do flash loans on behalf of the receiver's owner and drain
the funds through the fees

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 69

Exercise 6 - Damn-Vulnerable-Defi

e git clone https:/github.com/crytic/building-secure-contracts
e git checkout devcon
e Open program-analysis/echidna/Exercise-6.md

e Goal: let echidna solves the Unstoppable challenge

First: try without the hints

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 70

&

https://github.com/crytic/building-secure-contracts
https://github.com/crytic/building-secure-contracts/blob/devcon/program-analysis/echidna/Exercise-6.md

Exercise 6 - Description

e Two contracts

o UnstoppableLender: allow to take a flash loan and do a callback on the
caller
o ReceiverUnstoppable: user callback example

e Canyou prevent UnstoppableLender from working?

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 71

Exercise 6 - Target (UnstoppablelLender)

function flashLoan(uint256 borrowAmount) external nonReentrant {
require(borrowAmount > @, "Must borrow at least one token");

uint256 balanceBefore = damnValuableToken.balanceOf(address(this));
require(balanceBefore >= borrowAmount, "Not enough tokens in pool");

// Ensured by the protocol via the “depositTokens® function
assert(poolBalance == balanceBefore);

damnValuableToken.transfer(msg.sender, borrowAmount);
IReceiver(msg.sender).receiveTokens(address(damnValuableToken), borrowAmount);
uint256 balanceAfter = damnValuableToken.balanceOf(address(this));

require(balanceAfter >= balanceBefore, "Flash loan hasn't been paid back");

}

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

72

&

Exercise 6 - |Initialization

before(async function () {
/** SETUP SCENARIO - NO NEED TO CHANGE ANYTHING HERE */

[deployer, attacker, someUser] = await ethers.getSigners();

const DamnValuableTokenFactory = await ethers.getContractFactory('DamnValuableToken', deployer);
const UnstoppablelLenderFactory = await ethers.getContractFactory('UnstoppableLender', deployer);

this.token = await DamnValuableTokenFactory.deploy();
this.pool = await UnstoppablelenderFactory.deploy(this.token.address);

await this.token.approve(this.pool.address, TOKENS_IN_POOL);
await this.pool.depositTokens(TOKENS_IN_POOL);

await this.token.transfer(attacker.address, INITIAL_ATTACKER_TOKEN_BALANCE);

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 73

&

Exercise 6 - |Initialization

expect(
await this.token.balanceOf(this.pool.address)
).to.equal(TOKENS_IN_POOL);

expect(
await this.token.balanceOf(attacker.address)
).to.equal(INITIAL_ATTACKER_TOKEN_BALANCE);

// Show it's possible for someUser to take out a flash loan

const ReceiverContractFactory = await ethers.getContractFactory('ReceiverUnstoppable', someUser);
this.receiverContract = await ReceiverContractFactory.deploy(this.pool.address);

await this.receiverContract.executeFlashlLoan(10);

1)

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

T4

&

Exercise 6 - Solution

e Config file

The deployer and sender must be the same for this example.

The deployer is the 'attacker' and is sent INITIAL_ATTACKER_BALANCE

The actual value does not matter, as long as they are the same

deployer: '0x30000'

Sender must be the same so that it can use the attacker balance to try to break
the invariant.

sender: ['0x30000']

Allow for multi-abi use

multi-abi: true

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

75

&

Exercise 6 - Solution

// We will send ETHER_IN_POOL to the flash loan pool.

uint256 constant ETHER_IN_POOL = 1000000e18;

// We will send INITIAL_ATTACKER_BALANCE to the attacker (which is the deployer)
of this contract.

uint256 constant INITIAL_ATTACKER_BALANCE = 100e18;

DamnValuableToken token;
UnstoppablelLender pool;

// Setup echidna test by deploying the flash loan pool, approving it for token
transfers, sending it tokens, and sending the attacker some tokens.
constructor() public payable {

token = new DamnValuableToken();

pool = new UnstoppablelLender(address(token));

token.approve(address(pool), ETHER_IN_POOL);

pool.depositTokens(ETHER_IN_POOL) ;

token.transfer(msg.sender, INITIAL_ATTACKER_BALANCE);

Exercise 6 - Solution

// This is the callback function for flash loan receivers.
function receiveTokens(address tokenAddress, uint256 amount) external {

require(msg.sender == address(pool), "Sender must be pool");
// Return all tokens to the pool
require(

TERC20(tokenAddress).transfer(msg.sender, amount),
"Transfer of tokens failed"
);
}

// This is the Echidna property entrypoint.
// We want to test whether flash loans can always be made.
function echidna_testFlashLoan() public returns (bool) {
pool.flashLoan(10);
return true;

}

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 77 u

Exercise 6 - Solution

echidna_testFlashLoan: with ErrorRevert

Call sequence:
1.transfer(0x62d69f6867a0a084c6d313943dc22023bc263691,10001)

Event sequence:
Panic(1)

merror Revert 0x4e487b710001

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 78

Exercise 6 - Solution

e The pool require an exact balance equality - sending token to
directly to the pool will break this requirements
// Ensured by the protocol via the "depositTokens function
assert(poolBalance == balanceBefore);
Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 79

&

Comparison with similar tools

Other fuzzers

e Inbuilt in dapp. brownie, foundry, ..

e Might be easier for simple test, however
o Less powerful
o Require specific compilation framework

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Formal methods based approach

e Manticore, KEVM, Certora, ..

e Provide proofs, however

o More difficult to use
o Return on investment is significantly higher with fuzzing

Grigore Rosu
@RosuGrigore

1/2 "Formal verification” is now a buzzword in the
blockchain, but it will not be done properly unless
people understand that it takes *significantly* more
work to formally verify a program than to write the
program first place. Think 9x more for smart contracts!

9:56 PM - May 31, 2019 - Twitter Web Client

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

82

&

Echidna’s advantages

e Echidna has unique additional advanced features
o Can target high gas consumption functions
o Differential fuzzing
o Works with any compilation framework
O

Different APIs
m Boolean property, assertion, dapptest/foundry mode, ...

e Free & open source

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Conclusion

Devcon 2022

Building Secure Contracts: How to fuzz Like a Pro

84

&

Conclusion

e https://github.com/crytic/echidna
To learn more: github.com/crytic/building-secure-contracts

e Start by writing invariants in English, then write Solidity properties

o Start simple and iterate
e Your mission
o Try Echidna on your current project

ToB is hiring (https://jobs.lever.co/trailofbits)

e Security Consultants & Apprentices
e The road to the apprenticeship blogpost

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

https://github.com/crytic/echidna
https://github.com/crytic/building-secure-contracts
https://jobs.lever.co/trailofbits
https://blog.trailofbits.com/2022/08/12/the-road-to-the-apprenticeship/

Additional slides

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

86

&

Where to focus?

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

87

&

Where to focus?

e In practice: you don't know where the bugs are

e Code coverage vs behavior coverage
o Cover as many functions as possible or;
o Focus on specific components?

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro

Where to focus?

e Trydifferent strategies

o Behavior coverage first
m Focuson 1 or2components

o Code coverage first
m Cover many functions with simple properties
o Alternate: 1 day on behavior coverage, then 1 day on code coverage,

o No right or wrong approach: try and see what works for you

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 89

Where to focus?

e Start simple, then think about composition, related behaviors,

etc..

o Can transfer and transferFrom be equivalent?
m transfer(to, value) ?= transferFrom(msg.sender, to,
value)
o Is transfer additive-like?

m transfer(to, v@), transfer(to, v1) ?= transfer(to, vO +
v1)?

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 90

Where to focus?

e Start simple, then think about composition, related behaviors,

etc..

o Can transfer and transferFrom be equivalent?
m transfer(to, value) ?= transferFrom(msg.sender, to,
value)
o Is transfer additive-like?
m transfer(to, v@), transfer(to, v1) ?= transfer(to, vO +
v1)?
m Spoiler: this won't hold; why?

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 91

Where to focus?

e Building your own experience will make you more efficient over
time

e Learn on how to think about invariants is a key component to
write better code

Devcon 2022 | Building Secure Contracts: How to fuzz Like a Pro 92

