Symbolic Computation for fun and for profit

Hari

How do we optimize this code?

```solidity
function can_revert(uint x, uint y, uint z) pure returns (uint) {
    if (x < y) {
        if (y < z) {
            if (z < x) {
                revert("bad");
            }
        }
    }
    return 13;
}
```
What is symbolic computation?

- About representing properties using mathematical equations.
- Using solutions of the equations to reason about properties.
 - Usually the system having a solution means a property can be violated.
 - Usually the system having no solutions means a property is always true.
How do we represent a Yul variable?

- Variables in EVM are 256 bit integers.
- Most of the time, you represent variables as an element of integers (\mathbb{Z}).
 - If possible, add constraints $0 \leq x \leq 2^{256} - 1$.
How do we assign variables a value?

```javascript
{
    let x := 1
    let y := calldataload(0)
    let z := lt(x, y)
}

- We want to represent each assignment by constraints.
- Can we handle every assignment?

```javascript
{
 let x := 1
 switch calldataload(0)
 case 1 { x := 2 }
 case 2 { x := 3 }
 default { x := 4 }
}
```
SSA (Single Static Assignment) Variables

{
    let x := calldataload(0)
    let y := calldataload(32)
    // y is not SSA
    y := add(y, calldataload(64))
}

But you can transform it into:

{
    let x := calldataload(0)
    let y := calldataload(32)
    let z := add(y, calldataload(64))
    // replace all references to y after this by z.
}

SSA Variables

- We only want to work with SSA variables.
- It’s not always possible to do a Yul to Yul transform such that all variables are SSA.
- But we can still get a lot done. The Yul optimizer has an SSATransform step that transforms Yul into "pseudo SSA format".
- Whenever an non-SSA variable is encountered during analysis, replace it by a "free variable".
  - Each read would be replaced by a fresh free variable.
function add(uint x, uint y) pure returns (uint z) {
    z = x + y;
}

- For $0 \leq x, y, z \leq 2^{256} - 1$ and $x, y, z \in \mathbb{Z}$.
- Symbolically represent: $z = x + y$?
EVM semantics: $\text{add}(x, y) = x + y \pmod{2^{256}}$

$z = x + y \pmod{2^{256}}$.

Checked arithmetic: the value is only defined when $x + y < 2^{256}$.
Let's build a symbolic solver for $\text{lt}$, $\text{gt}$, $\text{iszero}$

\[
\text{lt}(a, b) = \begin{cases} 
  1 & \text{if } a < b \\
  0 & \text{if } b \leq a
\end{cases}
\]

\[
\text{gt}(a, b) = \begin{cases} 
  0 & \text{if } a \leq b \\
  1 & \text{if } b < a
\end{cases}
\]

\[
\text{iszero}(a) = \begin{cases} 
  1 & \text{if } a = 0 \\
  0 & \text{otherwise}
\end{cases}
\]
Difference Logic

- Variables $x_1, \ldots, x_n$ that are integers.
- Constraints of the form $x_i - x_j \leq k_{i,j}$ where $k_{i,j}$ is a constant.

Example:
Let $x, y$ and $z$ be integer variables and let there be constraints:

1. $x - y \leq 4$
2. $x - z \leq 3$

Does the system have a solution?
The assignments $x = 4$, $y = 0$ and $z = 1$ satisfies $x - y \leq 4$ and $x - z \leq 3$. 
What about:

1. $x - y \leq 4$
2. $y - z \leq 3$
3. $z - x \leq -8$

Does this system have a solution?
It doesn’t have a solution!

Proof: Assume there is a solution, let’s add all the three equations:

\[(x - y) + (y - z) + (z - x) \leq 4 + 3 + (-8)\]

\[0 \leq -1\]

Which is a contradiction.
Solvers for DL

For a constraint $a - b \leq k$, create nodes $a$ and $b$ with a directed edge from $b$ to $a$ of weight $k$.
Does it have a negative cycle?

![Diagram](attachment:diagram.png)

Negative cycles $\iff$ the constraints have no solutions.
Bellman Ford

- Solving DL for unsatisfiability: look for negative cycle.
- Bellman Ford can be used to compute this.
- Very easy to implement: can even be written in Solidity. See Leo’s dl-symb-exec-sol.
- See "Building an End-to-End EVM Symbolic Execution Engine in Solidity" tomorrow at 11:00 for more details.
Insight about unsatisfiability

- Unsatisfiability: when the set of constraints have no solution.
- We are generous about ignoring constraints that we can't solve.
- As long as we only care about unsatisfiability, we can do this.
  - Only optimize when the constraints are unsatisfiable. Otherwise, leave the code unchanged.
lt, gt, iszero as DL constraints

\[
\begin{align*}
\text{lt}(a, b) &= \begin{cases} 
1 & \text{iff } a - b \leq -1 \\
0 & \text{iff } b - a \leq 0 
\end{cases} \\
\text{gt}(a, b) &= \begin{cases} 
0 & \text{iff } a - b \leq 0 \\
1 & \text{iff } b - a \leq -1 
\end{cases} \\
\text{iszero}(a) &= \begin{cases} 
1 & \text{iff } a - \text{zero} \leq 0 \\
0 & \text{iff } \text{zero} - a \leq -1 
\end{cases}
\end{align*}
\]

In the last example, zero is just a variable we use to indicate zero.

\[1 \text{iff: if and only if.}\]
Encoding Yul

▶ We want to know if the value of an expression is always 0 or always non-zero.
▶ if cond { ... }.
  ▶ Can we replace cond by 0 or 1?
  ▶ Inside the branch, we can add the additional constraint that cond = true.
▶ Example: if lt(x, y) { ... }
  ▶ Check if adding the constraint $x < y$ makes the system unsatisfiable:
    ▶ In DL: $x - y \leq -1$.
    ▶ replace $lt(x, y)$ by 0.
  ▶ Check if adding the constraint $x \geq y$ makes the system unsatisfiable:
    ▶ In DL: $y - x \leq 0$.
    ▶ replace $lt(x, y)$ by 1.
  ▶ Inside the if body, add the constraint $x < y$.
    ▶ In DL: $x - y \leq -1$. 
Can this function ever revert?

```plaintext
{
 let x := calldataload(0)
 let y := calldataload(32)
 let z := calldataload(64)
 if lt(x, y) {
 if lt(y, z) {
 // should be replaced by `if 0`
 if lt(z, x) {
 revert(0, 0)
 }
 }
 }
}
```
Define variables $x, y, z \in \mathbb{Z}$.

No additional constraints from `calldata.load(...)`. 

Dummy variable zero $\in \mathbb{Z}$.

Add constraints for 256-bit numbers ($0 \leq a \leq 2^{256} - 1$):

1. zero $- x \leq 0$, zero $- y \leq 0$, zero $- z \leq 0$
2. $x - \text{zero} \leq 2^{256} - 1$, $y - \text{zero} \leq 2^{256} - 1$, $z - \text{zero} \leq 2^{256} - 1$

Inside each if branch, add the corresponding `lt` constraints:

1. $x - y \leq -1$
2. $y - z \leq -1$
3. $z - x \leq -1$
Graph of the encoding

$x \rightarrow z$

$0 \rightarrow M \rightarrow 0 \rightarrow M$

$-1 \rightarrow \text{zero} \rightarrow -1$

$M \rightarrow 0 \rightarrow M$

$y$

$^2 M = 2^{256} - 1.$
Negative cycle? Unsatisfiable?\(^3\)

\[^3 M = 2^{256} - 1.\]
Can this function ever revert?

```plaintext
{
 let x := calldataload(0)
 let y := calldataload(32)
 let z := calldataload(64)
 if lt(x, y) {
 if lt(y, z) {
 // Replace `if lt(z, x)` by `if 0`
 if 0 {
 revert(0, 0)
 }
 }
 }
}
```
Proofs

- If we don’t trust the solver, we can ask it to produce a proof.
- The proof in this case would be a set of constraints whose LHS would add up to 0 and RHS to negative.
  - This can be verified.
error OutOfBounds();

contract C {
  uint[] arr;
  function f(uint idx) external view returns (uint) {
    if (idx >= arr.length) revert OutOfBounds();
    // compiler auto generates, the bound checks here.
    // But we can infer the constraint `idx < arr.length`
    return arr[idx];
  }
}

- Try to see if a branch will always terminate: either by reverting or returning.
  - Add the opposite constraints outside the branch.
Improvements

- Difference logic only allowed constraints of the form $x - y \leq k$.
- Next step: constraints of the form:

$$a_1 \cdot x_1 + a_2 \cdot x_2 + \cdots + a_n \cdot x_n \leq b$$

- where $a_i$ and $b$ are constants and $x_i$ is a symbolic variable in integers\(^4\) for $i = 1, \cdots, n$.
- Linear programs and the Simplex method.
- You can encode add and sub.
  - Requires branching to handle wrapped arithmetic.
- Encode $\text{mul}(x, a)$ and $\text{div}(x, a)$ where $a$ is a constant and $x$ is symbolic.

---

\(^4\)We’ll have to relax to Rational or Reals for faster solvers.