
Testing Smart Contracts
with Waffle



tinyurl.com/eth-waffle

Let’s download the repo



Two ways to test a smart contract...



● Easy and intuitive

● Extremely flexible

● DApp native

Two ways to test a smart contract...



Waffle’s qualities
What makes Waffle sweet & simple?

● Minimalistic approach 🍃 

● Blazing fast 🔥
● Friendly syntax 💨
● Open source 🪨



Waffle’s qualities

Hardhat

🤝

What makes Waffle sweet & simple?

● Minimalistic approach 🍃 

● Blazing fast 🔥
● Friendly syntax 💨
● Open source 🪨



Waffle’s functions
What Waffle actually does?

● Smart contract compilation

○ Vyper

○ Solidity

● Smart contract deployment

● Smart contract testing

○ Matchers

○ Fixtures

○ Smart contract mocks



Waffle’s components
What is Waffle made of?

● TypeScript

○ TypeChain

● Mocha

● Chai

○ With custom matchers

● ethers.js



1. Bytecode
2. ABI (App. Binary Interface)

3. Flattened code

Smart Contract
Compilation



Smart Contract
Deployment



Smart Contract
Deployment



Interacting with the blockchain



Interacting with the Ethereum Network

JSON RPC



Ethereum APIs
● Infura

● Alchemy

● Pokt

● Metamask (injected provider)

● In-Memory Emulated Networks (i.e. Ganache)

● Your own Ethereum node 🎉

Providing access to Ethereum 
network with a single endpoint



Ethereum JS libraries
● Ethers.js

● Web3.js

Wrapping JSON-RPC complexities 
with a nice JS interface



ethers.js



ethers.js



Smart contract testing

Now the fun begins…



Basic Testing ☑



Events 🎙



External Calls 📞



Reverts ⛔



Token Balances ⚖



Mock Contracts 🎭



Mock Contracts 🎭



Fixtures 🗃



First full setup



Let’s code!



Difficulty tracks

Beginner

Use already done smart contract code 
and work on adding tests

Advanced

Smart with an empty contract and 
create smart contract and tests 
altogether in using Test Driven 
Development

● Write a failing test
● Implement contract logic
● Check if the test passes
● Refactor
● Repeat



Task 1

Write a smart contract

● Split transferred ETH in half and 
send to two addresses

● Revert if 0 ETH was sent

● Refund remainder

Write tests

● Test balances before and after 
split

○ Check returning the 
remainder

● Test if contract reverts on 0



Task 2

Write a smart contract

● Add proper event when split 
happens

● Add an event signalising that a 
non-zero remainder was returned

● Only owner of the contract is 
allowed to use splitting funcion

● Use dynamic array of addresses

Write tests

● Test the events

● Test owner restrictions

● Test dynamic argument behavior



Let’s code!
Task 1

● Split ether

● Revert on zero

● Return remainder

Task 2

● Add events

● Use dynamic array

● Add owner

Difficulty tracks

● Focus on tests

● Test-drive smart contract

tinyurl.com/eth-waffle

ethereum-waffle.readthedocs.io



Przemek Rząd
@przemek_rzad

Daniel Izdebski
@DatSpodo

Thank you!
Bartek Rutkowski
@barrutko Justyna Broniszewska

@jusbroni


