Read-only Reentrancy

Ioannis Sachinoglou
ChainSecurity

About ChainSecurity

e We are focused on blockchain security
e Smart contract audits
e Some of our clients:

© 0O O 0O o O O

Maker
Curve.fi
Compound
Aave
Yearn
Tinch

Lido

Why we should care

e It's anovel attack often neglected by developers
and auditors

e More and more protocols interact with one another

e |t has affected DeFi protocols integrating with
Curve.fi

e Total of over $100 million dollars at risk

Affected Protocol

MakerDAO

Enzyme

Abracadabra

TribeDAO

Opyn

Funds (S) At Risk

What is Reentrancy

Execution is interrupted e.g. ETH or ERC77/7 transfers

The state has not been fully updated

The control flow is passed to another contract

DAOQO hack: One of the most famous attacks!

We are usually concerned with entry points that modify the

Statel

What is Reentrancy

contract Reentrant {

mapping (address => uint256) private userBalances;

uint256 totalSupply;

function withdrawAll() external {
uint256 balance = userBalances[msg.sender];
require(balance > 0, "Insufficient balance");

totalSupply -= balance;

(bool success,) = msg.sender.call{value: balance}("");

require(success, "Failed to send Ether");

userBalances[msg.sender] = 0;

Reentrant.withdrawAll()

>

msg.sender.call()

I HH I
30

Attacker

Reentrant.withdrawAll()

I H” I
30

Victim: Reentrant

What is read-only

Reentrancy

° Attacker Reentrant

1 contract Reentrant {

. k . \
bool private lock; Reentrant.withdrawAll()
mapping (address => uint256) public userBalances;

uint256 public totalSupply; msg.sender.call()

modifier nonReentrant() {
require(!lock);
lock = true;
5

lock = false;

function withdrawAll() external nonReentrant { Use the ratio:
uint256 balance = userBalances[msg.sender]; userBalances(Attacker) / AN
require(balance > 0, "Insufficient balance"); totalSupply() 1. Reentrant.userBalances(Attacker)
totalSupply -= balance; 2. Reentrant.totalSupply()
(bool success,) = msg.sender.call{value: balance}("");
require(success, "Failed to send Ether");

userBalances[msg.sender] =

Victim: DeFi Protocol

Curve.fi: StableSwapSTETH

The pool holds ETH (native) and stETH (ERC20)

The token_supply of the Ip_token is

AT LS) modified but not all the balances have
2 def remove_liquidity(_amount: uint256,_min_amounts: uint256[N_COINS]) -> been updated

uint256[N_COINS]:

CurveToken(1lp_token).burnFrom(msg.sender, _amount)

for 1 in range(N_COINS):

if 1 =
raw_call(msg.sender, b"", value=value)
else:

1 i i -> ut : , .
1 def get_virtual_price() -> uint256 get_virtual_price() depends on

the balances and the
token_supply

D: uint256 = self.get_D(self._balances(), self.

return D * PRECISION / token_supply

Final thoughts

The storage update is not yet finalized

We just READ the state and make a decision based on it!
Reentrancy locks for state changing functions is NOT enough!
For new protocols: The view functions should revert if the lock
is taken or make the lock public

For the rest: try to call a function with non-reentrant modifier

A
XA

Thank you!

Ioannis Sachinoglou

ChainSecurity
Non-technical read joannis.sachinoglou@chainsecurity.com Technical read

