Quest for the Best Tests

A retrospective on # lesting heMerge

Parithosh Jayanthi

DevOps Engineer, Ethereum Foundation

Section1

#TestingTheMerge Assemble

Why is the Merge complicated?

s >20 client combinations need to be tested & regressions can sneak in very
easily

s Specification is under active development -> Harder to track subtle
differences

= Communicating and debugging various client combinations

s Figuring out how to test this in a reliable manner!

s All future upgrades will inherit some of the complexity - build once, use
many

s Debug knowledge needed for ELs and CLs are quite different

Forked network
Slashing
Unhealthy network

Engine API
POSSIBLY.GOWRONG=
- ‘,—_...’~__‘ AL | L,' ' # . - | oy L ’
Reorgs
Reduced throughput

State corruption

What tests can we have?

e Unit tests:
o Handled by client teams internally
o Usually runs on ever PR
o Reduces chance of regressions
e [ntegration tests:
o Handled partially by teams
o Involves local testnets or interop tests
o Ensures interop at a high level

What tests can we have?

e System tests:
o Tests end-to-end functionality
o Involves external parties and the community
e Production tests:
o Tests performance on a prod-like environment
o Public testnets involving everyone
o Finds issues that happen only at real-world loads

Section 2

ZTestingTheMerge: The Infinity War

Spec tesls

The Cl runs on every commit to the
Specs repo, ensuring that the specs
pass tests

Client teams import the specs and
test it in their local Cls as well

Acts as a sanity check to make sure
client aren’t implementing a spec
that won't pass tests

@© setup-env 6s @ table_of_contents
@ codespell

@ lint

Matrix: pyspec-tests

@ pyspec-tests (altair)

@ pyspec-tests (bellatrix) 5m 22s

@ pyspec-tests (capella)

@ pyspec-tests (phase0) 2m 41s

Hive tests

Hive tests run using a simulator that
starts up the clients and runs the tests
against a pre-defined interface

Acts as a integration and regression
check to make sure client aren’t failing
defined edge cases

e.g: Feed a Nethermind node two
terminal blocks, assert how it
transitions

Shoutout to @elbuenmayini

Start time Suite Clients Pass
2022-10-10T13:24:58.444Z engine-api nethermind v (147)
2022-10-10T11:19:45.834Z engine-api go-ethereum v (141)
2022-10-10T08:32:22.169Z engine-api erigon v (141)
2022-10-10T04:19:55.077Z engine-api nethermind v (141)
2022-10-10T03:25:14.198Z engine-api go-ethereum v (141)
2022-10-09T20:19:15.930Z engine-api nethermind v (141)
2022-10-09T19:24:28.663Z engine-api go-ethereum v (141)
2022-10-09T16:35:01.964Z engine-api erigon v (141)
2022-10-09T11:41:45.059Z engine-api nethermind v (141)
2022-10-09T10:46:59.564Z engine-api go-ethereum v (141)
2022-10-09T07:59:43.300Z engine-api erigon v (147)
2022-10-09T03:05:33.754Z engine-api nethermind v (141)
2022-10-09T02:10:57.615Z engine-api go-ethereum v (141)
2022-10-08T18:25:21.055Z engine-api nethermind v (141)
2022-10-08T17:30:35.247Z engine-api go-ethereum v (141)
2022-10-10T10:24:07.968Z eth2-testnet teku-vc,go-ethereum,teku-bn v (2)

cl-nethermind.yml

on: workflow_dispatch

Matrix: kurtosis

@ apt 1Ns @ kurtosis (lighthouse) 42m 29s
@ kurtosis (lodestar) 42m 6s
° @ kurtosis (nimbus) 38m 155
Kurtosis tests YRR
Kurtosis spins up a local testnet with the o WG] G
required EL/CL combinations and then
allows them to transition/merge. It then
asserts some “happy case” conditions.
An integration test make sure client are frtitacts
compatible - |
Useful to rapidly iterate ideas ;
e.g: Are blocks being produced, are there D Honnouse-nethormind (Expies .
tx’s... @ lodestar-nethermind (Expired 17.5 MB
@ nimbus-nethermind (Expired 38.2 MB
) prysm-nethermind (Expired 34 MB

=
Q) teku-nethermind (Expired 714 MB

Svyne tests

The sync test co-ordinator spins up every
client combination daily and syncs to
head on various testnets. Both genesis
sync as well as Checkpoint sync are
performed.

Edge case sync tests are also performed:
EL down, CL down, etc

Acts as a integration test make sure
users can always sync the network
Shoutout to @samcmAU

test:
name: "basic"

tasks:
— name: run_command
config:
command:
- "echo"
- "hello!"
name: execution_is_healthy
name: consensus_is_healthy
name: both_are_synced
config:
consensus:
percent: 100
execution:
percent: 100
name: run_command
config:
command:
- "echo"
- "done!"

execution:
url: http://localhost:8545

consensus:
url: http://localhost:5052

@ run-test (lighthouse, geth, ropsten, i...
@ run-test (lighthouse, besu, ropsten, ...
@ run-test (lighthouse, nethermind, ro...
@ run-test (lighthouse, erigon, ropsten...
@ run-test (teku, geth, ropsten, is-heal...
@ run-test (teku, besu, ropsten, is-hea...
@ run-test (teku, nethermind, ropsten, ...
@ run-test (teku, erigon, ropsten, is-h...

@ run-test (prysm, geth, ropsten, is-h...

@ run-test (prysm, besu, ropsten, is-h...
@ run-test (prysm, nethermind, ropste...
@ run-test (prysm, erigon, ropsten, is-...
@ run-test (nimbus, geth, ropsten, is-h...
@ run-test (nimbus, besu, ropsten, is-...

@ run-test (nimbus, nethermind, ropst...

@ run-test (nimbus, erigon, ropsten, is...
@ run-test (lodestar, geth, ropsten, is-...
@ run-test (lodestar, besu, ropsten, is-...
@ run-test (lodestar, nethermind, rops...

@ run-test (lodestar, erigon, ropsten, i...

Shadow Forks § Testnels

Allows us to check compatibility across all
clients through the entire lifecycle

Fresh testnets allow us to check
assumptions across client pairs without
much overhead

Shadow forks allow us to stress test the
clients with real state and transaction load
We can invite participants in a controller
manner to take part in the tests

Acts as release test which triggers real world
edge cases, before we recommend the
releases to the general public

Modified Goerli Config

Beacon
Siot

Beacon
Slot

TTD is hit

Canonical
Goerli
Block

Shadow
Goerli
Block

Exec Payload

Beacon
Slot

Antithesis § Fuzzers

Antithesis offers a deterministic hypervisor
which allows us to perform network splits,
packet loss while fuzzing clients. The
deterministic hypervisor allows us to
re-trigger the issue, allowing for capturing

the state of the client and easier debugging.

Various fuzzers are run against different
layers of the stack to find bugs.

These bugs also allow us to re-evaluate if
changes need to be made in the specs or if
the bug is an implementation level issue.

[b s s ow e

]
]
]
)
1
1
1
1
)
1
]

PR R

[
[
[
[
[
[
I
[
[
[
[

Testing lifecycle for the Merge

Fuzzing
(Automated testing)

Spec tests
(Sanity tests)

Client releases

Hive tests
(Regression tests)

Antithesis
(Stress tests)

Kurtosis
(Integration tests)

Sync Tests
(Integration tests)

Testnets
(Release tests)

Section 3

#TestingTheMerge: The Endgame

RAYONISM

April 2021 6 DEVNETS KINTSUGI GOERLI
S November & December 2021 SHADOW
December 2021 FORK(GSF) 1
I : . January 2022

PITHOS AMPHORA
October 2021 November 2021

GSF3&4
April 2022 RLioh
® ® o000 00 OO 0o
March 2022
ROPSTEN MSF 3-6 MAINNET GSF2&3
June 2022 May&June 2022 SHADOW March & April 2022
MSE e FORK(MSF)
June 2022 182
GSF 5&6 March & April 2022
July & August 2022
o—© @ @ o ® 00— ©® MAINNET
September 2022
Gl MSF 10 GOERLI MSF 11-13
July 2022

July 2022 August 2022 August 2022

So what did we still miss?

e [In-memory database too low to process mainnet blocks

e Non-optimal block production: Random production of O/few tx blocks

e Multiple terminal blocks (in a specific condition) caused missing receipts
and caused failed proposals

e |ots of constant syncing nodes on mainnet led to unexpected performance
degradation when compared to shadow forks

e Failover beacon node scenario -> some requests sent just to the primary

What can we reuse?

Running testnets helped show us tooling blind spots in the DevOps
ecosystem:

- Metrics exporter: https://github.com/samcm/ethereum-metrics-exporter

- Sync testing: https://github.com/samcm/ethereum-sync-testing/actions

- Genesis gen.: https://github.com/skylenet/ethereum-genesis-generator

- Client automation: https://github.com/ethPandaOps/ethereum-helm-charts
- Scalable testnets: https://github.com/ethPandaOps/ethereum-k8s-testnets
- ERasy testnets: https://github.com/ethereum/consensus-deployment-ansible
- Faucet: https://github.com/komputing/FaucETH

- Checkpoint Sync Provider: https://github.com/samcm/checkpointz

- PRsto explorers, validator key generation tools, load balancer

https://github.com/samcm/ethereum-metrics-exporter
https://github.com/samcm/ethereum-sync-testing/actions
https://github.com/skylenet/ethereum-genesis-generator
https://github.com/skylenet/ethereum-helm-charts
https://github.com/skylenet/ethereum-k8s-testnets
https://github.com/ethereum/consensus-deployment-ansible
https://github.com/komputing/FaucETH
https://github.com/samcm/checkpointz

If you want to join the testing efforts
contact mario.vegawethereum.org

Thank you!
Join #TestingThe{Surge,Verge,Purge}!

Parithosh Jayanthi

DevOps Engineer
parithosh@ethereum.org

g @parithosh_j

