
Quest for the Best Tests
A retrospective on #TestingTheMerge

Parithosh Jayanthi
DevOps Engineer, Ethereum Foundation

#TestingTheMerge Assemble

Section 1

Why is the Merge complicated?

■ >20 client combinations need to be tested & regressions can sneak in very
easily

■ Specification is under active development -> Harder to track subtle
differences

■ Communicating and debugging various client combinations
■ Figuring out how to test this in a reliable manner!
■ All future upgrades will inherit some of the complexity - build once, use

many
■ Debug knowledge needed for ELs and CLs are quite different

What tests can we have?

● Unit tests:
○ Handled by client teams internally
○ Usually runs on ever PR
○ Reduces chance of regressions

● Integration tests:
○ Handled partially by teams
○ Involves local testnets or interop tests
○ Ensures interop at a high level

What tests can we have?

● System tests:
○ Tests end-to-end functionality
○ Involves external parties and the community

● Production tests:
○ Tests performance on a prod-like environment
○ Public testnets involving everyone
○ Finds issues that happen only at real-world loads

#TestingTheMerge: The Infinity War

Section 2

Spec tests
● The CI runs on every commit to the

specs repo, ensuring that the specs
pass tests

● Client teams import the specs and
test it in their local CIs as well

● Acts as a sanity check to make sure
client aren’t implementing a spec
that won’t pass tests

Hive tests
● Hive tests run using a simulator that

starts up the clients and runs the tests
against a pre-defined interface

● Acts as a integration and regression
check to make sure client aren’t failing
defined edge cases

● e.g: Feed a Nethermind node two
terminal blocks, assert how it
transitions

● Shoutout to @elbuenmayini

Kurtosis tests
● Kurtosis spins up a local testnet with the

required EL/CL combinations and then
allows them to transition/merge. It then
asserts some “happy case” conditions.

● An integration test make sure client are
compatible

● Useful to rapidly iterate ideas
● e.g: Are blocks being produced, are there

tx’s…

Sync tests
● The sync test co-ordinator spins up every

client combination daily and syncs to
head on various testnets. Both genesis
sync as well as Checkpoint sync are
performed.

● Edge case sync tests are also performed:
EL down, CL down, etc

● Acts as a integration test make sure
users can always sync the network

● Shoutout to @samcmAU

Shadow Forks & Testnets
● Allows us to check compatibility across all

clients through the entire lifecycle
● Fresh testnets allow us to check

assumptions across client pairs without
much overhead

● Shadow forks allow us to stress test the
clients with real state and transaction load

● We can invite participants in a controller
manner to take part in the tests

● Acts as release test which triggers real world
edge cases, before we recommend the
releases to the general public

Antithesis & Fuzzers
● Antithesis offers a deterministic hypervisor

which allows us to perform network splits,
packet loss while fuzzing clients. The
deterministic hypervisor allows us to
re-trigger the issue, allowing for capturing
the state of the client and easier debugging.

● Various fuzzers are run against different
layers of the stack to find bugs.

● These bugs also allow us to re-evaluate if
changes need to be made in the specs or if
the bug is an implementation level issue.

Testing lifecycle for the Merge

#TestingTheMerge: The Endgame

Section 3

So what did we still miss?

● In-memory database too low to process mainnet blocks
● Non-optimal block production: Random production of 0/few tx blocks
● Multiple terminal blocks (in a specific condition) caused missing receipts

and caused failed proposals
● Lots of constant syncing nodes on mainnet led to unexpected performance

degradation when compared to shadow forks
● Failover beacon node scenario -> some requests sent just to the primary

What can we reuse?

Running testnets helped show us tooling blind spots in the DevOps
ecosystem:

- Metrics exporter: https://github.com/samcm/ethereum-metrics-exporter
- Sync testing: https://github.com/samcm/ethereum-sync-testing/actions
- Genesis gen.: https://github.com/skylenet/ethereum-genesis-generator
- Client automation: https://github.com/ethPandaOps/ethereum-helm-charts
- Scalable testnets: https://github.com/ethPandaOps/ethereum-k8s-testnets
- Easy testnets: https://github.com/ethereum/consensus-deployment-ansible
- Faucet: https://github.com/komputing/FaucETH
- Checkpoint Sync Provider: https://github.com/samcm/checkpointz
- PRs to explorers, validator key generation tools, load balancer

https://github.com/samcm/ethereum-metrics-exporter
https://github.com/samcm/ethereum-sync-testing/actions
https://github.com/skylenet/ethereum-genesis-generator
https://github.com/skylenet/ethereum-helm-charts
https://github.com/skylenet/ethereum-k8s-testnets
https://github.com/ethereum/consensus-deployment-ansible
https://github.com/komputing/FaucETH
https://github.com/samcm/checkpointz

If you want to join the testing efforts
contact mario.vega@ethereum.org

Thank you!
Join #TestingThe{Surge,Verge,Purge}!

Parithosh Jayanthi
DevOps Engineer

parithosh@ethereum.org

 @parithosh_j

