5%

4

Nolr Programming Language

Private Value Transfer in 10 Lines

Maxim Vezenov
Software Engineer, Aztec Network

@@@W%

Section T

Introduction to Noir

What is Noir and wnat is new?

Noir is more flexible in its design than other domain specific languages

e Compiles down to an intermediate representation
o Abstract Circuit Intermediate Representation (ACIR)
o The IR canto be compiled down to any NP complete language

e Enables the decoupling of the backend proof system and the
language
o Currently has one fully integrated backend that utilizes Aztec’s
barretenberg library

o Plans for future integrations include arkworks proof systems such as
Marlin and Grothl6

e Only DSL that currently has fully integrated proving system
optimizations
o Custom gates

What Is the benefit?

e Auniversal ZK DSL based on open source technology
o Noiris Rust-based and draws on arkworks for its Field types
e Further collaboration in the ZK space that enables an open standard for ZK
circuit construction
o The EVM has created value that has extended past Ethereum itself

® Proof systems can supply a fixed list of optimized black box functions

o These functions act as a standard library that the frontend can access
o pedersen, merkle_membership, sha256, schnorr_verify

e Lower barriers to circuit development
o |ncorporate cryptographic safety into the language itself

Backend Proof

compile, build,
prove, verify

Text
representing the
circuit and
program inputs

System
IR that can Solve witness
compile down to and create proof
arithmetic (PLONK,
circuit or R1CS Groth16)

constraints

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1aq82iYCDN9IXvXmearuPC6YF6Z8w8oVl

@@@W%

Section 2

Private Transter Circuit

use dep::std;

fn main(
recipient : Field,

priv_key : Field,
note_root : pub Field,
index : Field,

note_hash_path : [Field; 3],

secret: Field
-> pub [Field; 2] {

Private Transfer Circuit

e Rust-like syntax
e Allinputs to main are private by default
o The pub’ keyword makes them public,
meaning they must also be supplied to the
verifier
e One native Field type
o Smaller data types such as u32 ultimately
translate into a Field

Standard Library Functions

000
e Use the scalar_mul module to find the public key
from the private key

let pubkey = std::scalar_mul::fixed_base(priv_key);

let pubkey_x = pubkey[0]; e Hash the public key and random secret to hide the
let pubkey_y = pubkey[1]; note commitments origin
e The standard library has multiple hash functions
let note_commitment = std::hash::pedersen([pubkey_x, o Pedersen
pubkey_y, secret]); o Blake2s
o Sha256
o MiMC

let nullifier = std::hash::pedersen(
[note_commitment[0], index, priv_key]
)8

let is_member = std::merkle::check_membership(

note_root, note_commitment[0], index, note_hash_path
)

constrain is_member == 1;

[nullifier[0], recipient]

Check Merkle Membership

e First, generate the nullifier to prevent double
spends
o Thisis public and returned from the circuit
e Standard library function for merkle membership
o Currently very Aztec specific and limited to
Pedersen for node compression
e Generics have recently been added with first-class
functions on the timeline
o Users will be able to specify which hasher
they would like for their merkle membership
proof

const N: Field = 5;

struct Bar<T> {

I

one: Field,
two: Field,
other: T,

fn foo<T>(bar: Bar<T>) {

I

constrain bar.one == bar.two;

fn main(x : Field, y : [Field; N]) {

}

let res = x * N;
constrain res == y[0];

let res2 = x * mysubmodule::N;
constrain res != res2;

let barl: Bar<Field> = Bar { one:

if barl.other == 10 {
foo(barl);
}s

mod mysubmodule {

b

const N: Field = 10;

fn my_helper() -> const Field {
|
ik

res, two: y[0], other: mysubmodule::my_helper() };

Additional Features

Arrays, Tuples, Structs
Submodules

Global consts

For loops

If Statements

Logical and Bitwise operators
Generics

(N N J
const N: Field = 5;

struct Bar<T> {

one: Field,
two: Field,
other: T,
}
fn foo<T>(bar: Bar<T>) {
constrain bar.one == bar.two;
}
fn main(x : Field, y : [Field; N]) {
let res = x * N;
constrain res == y[0];
let res2 = x * mysubmodule::N;
constrain res != res2;
let barl: Bar<Field> = Bar { one:
if barl.other == 10 {
foo(barl);
}s
}

mod mysubmodule {
const N: Field = 10;

fn my_helper() -> const Field {
|
ik

res, two: y[0], other: mysubmodule::my_helper() };

Simple Circuit Syntax

e Noir aims to be Rust-like in its syntax while
abstracting away low-level concepts

e Complex cryptographic functionality can be
supplied by the proving system through the stdlib
rather than through new Noir libraries

e All smaller data types translate to a Field type

o Can constrain on any of the data types Noir
supports

let compiled_program = compile(

path.resolve(__dirname, '../circuits/src/main.nr')
\ R : .)5
F)r()\/|r)gg Ear](j \/63r|f5/|r]gg N _TS/F)GEES(3r|£)t let acir = compiled_program.circuit;
let merkleProof = tree.proof(0);
e NoirdS let note_hash_path = merkleProof.pathElements
o Enables compilation of a Noir program e
o Canread an ACIR from file generated by recipient: recipient,
nargo priv_key: "0x° + sender_priv_key.toString('hex'),
e Specify the program’s ABI directly in Typescript ?ggg;fogt: B acs
o ABI parameters can be a NodeJS number notefhasﬁfpath: [
type or hex string ‘0x" + note_hash_path[0],

"0x" + note_hash_path[1],

"0x° + note_hash_path[2],
1,
secret: "0x° + secret.toString('hex'),
return: “0x° + nullifier.toString('hex'),

Proving and Verifying in Typescript
(XX)

e We set up the prover and verifier using a

Typescript wrapper around the proving system let [prover, verifier] = await setup_generic_prover_and_verifier(acir);
O @noir-lang/barretenberg const proof: Buffer = await create_proof(prover, acir, abi);

e Asthe proving system is compatible with the ACIR
it just needs this as a parameter to set up a prover
and verifier

e The ABIis used to solve the circuit's withess and
ultimately generate the proof

e The public inputs are prepended to the proof

o Formatted as 32 byte hex values
o The inputs remain in order of how they are
specified in the ABI

const verified = await verify_proof(verifier, proof);

Verification with Solidity

e Aztec's barretenberg allows to compile
from a Noir program to an Ethereum
contract

o Other proving systems must supply
their own implementation

o Same goes for verification with a
different smart contract platform

async function generate_sol_verifier() {
let compiled_program = compile(
resolve(__dirname, '../circuits/src/main.nr')
it

const acir = compiled_program.circutit;
let [_, verifier] = await setup_generic_prover_and_verifier(acir);

const sc = verifier.SmartContract();
syncWriteFile("../contracts/plonk_vk.sol", sc);

}

function syncWriteFile(filename: string, data: any) {
writeFileSync(join(__dirname, filename), data, {

flag: 'w',

1)

}

generate_sol_verifier().then(() => process.exit(0)).catch(console.log);

let Verifier: ContractFactory =
await ethers.getContractFactory("TurboVerifier");

\/E3rif}(zgati<)rw \A/iTYW ES()‘i(jiTB/ let verifierContract: Contract = await Verifier.deploy();

const sc_verified = await verifierContract.verify(proof);

e The proof can be passed to the Solidity

verifier exactly as generated by the backend
o No serialization or re-formatting is
necessary

e This flow may differ with different proving
systems and depends on the backend
implementation being used with Noir

e Full example can be seen at
https:/github.com/vezenovm/simple_shield

expect(sc_verified).eq(true)

https://github.com/vezenovm/simple_shield

~uture Work

Here's the timeline

Verify Proof

Effective Tooling

Noir Contracts

Recursive proofs inside of
Noir

Improve the development
experience through REPLs,
IDE integrations,
debugging tools

4
v

Noir-specific user-defined
data type to enable
public/private smart
contracts in Noir

&vé/
Thank you!

Maxim Vezenov

Software Engineer, Aztec Protocol
maxim@aztecprotocol.com

0 @maximvezenov

Noir offers simple syntax with
optimized functionality

Simple Circuit Syntax

Noir aims to be Rust-like in its syntax while
abstracting away low-level concepts

Complex cryptographic functionality can be
supplied by the proving system through the stdlib
rather than through new Noir libraries

All smaller data types translate to a Field type

o Can constrain on any of the data types Noir
supports

