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Introduction to Noir

Section 1



What is Noir and what is new?
Noir is more flexible in its design than other domain specific languages

● Compiles down to an intermediate representation
○ Abstract Circuit Intermediate Representation (ACIR)
○ The IR can to be compiled down to any NP complete language

● Enables the decoupling of the backend proof system and the 
language
○ Currently has one fully integrated backend that utilizes Aztec’s 

barretenberg library
○ Plans for future integrations include arkworks proof systems such as 

Marlin and Groth16

● Only DSL that currently has fully integrated proving system 
optimizations
○ Custom gates



What is the benefit?

● A universal ZK DSL based on open source technology 
○ Noir is Rust-based and draws on arkworks for its Field types

● Further collaboration in the ZK space that enables an open standard for ZK 
circuit construction
○ The EVM has created value that has extended past Ethereum itself

● Proof systems can supply a fixed list of optimized black box functions
○ These functions act as a standard library that the frontend can access
○ pedersen, merkle_membership, sha256, schnorr_verify

● Lower barriers to circuit development
○ Incorporate cryptographic safety into the language itself
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https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1aq82iYCDN9IXvXmearuPC6YF6Z8w8oVl


Private Transfer Circuit

Section 2



Private Transfer Circuit

● Rust-like syntax
● All inputs to main are private by default

○ The `pub` keyword makes them public, 
meaning they must also be supplied to the 
verifier

● One native Field type
○ Smaller data types such as u32 ultimately 

translate into a Field



Standard Library Functions

● Use the scalar_mul module to find the public key 
from the private key 

● Hash the public key and random secret to hide the 
note commitments origin

● The standard library has multiple hash functions
○ Pedersen
○ Blake2s
○ Sha256
○ MiMC



Check Merkle Membership

● First, generate the nullifier to prevent double 
spends
○ This is public and returned from the circuit 

● Standard library function for merkle membership
○ Currently very Aztec specific and limited to 

Pedersen for node compression
● Generics have recently been added with first-class 

functions on the timeline
○ Users will be able to specify which hasher 

they would like for their merkle membership 
proof



Additional Features

● Arrays, Tuples, Structs
● Submodules
● Global consts
● For loops
● If Statements
● Logical and Bitwise operators
● Generics



Simple Circuit Syntax

● Noir aims to be Rust-like in its syntax while 
abstracting away low-level concepts

● Complex cryptographic functionality can be 
supplied by the proving system through the stdlib 
rather than through new Noir libraries

● All smaller data types translate to a Field type

○ Can constrain on any of the data types Noir 
supports



Proving and Verifying in Typescript

● NoirJS
○ Enables compilation of a Noir program
○ Can read an ACIR from file generated by 

nargo
● Specify the program’s ABI directly in Typescript

○ ABI parameters can be a NodeJS number 
type or hex string



Proving and Verifying in Typescript

● We set up the prover and verifier using a 
Typescript wrapper around the proving system
○ @noir-lang/barretenberg

● As the proving system is compatible with the ACIR 
it just needs this as a parameter to set up a prover 
and verifier

● The ABI is used to solve the circuit’s witness and 
ultimately generate the proof

● The public inputs are prepended to the proof
○ Formatted as 32 byte hex values
○ The inputs remain in order of how they are 

specified in the ABI



Verification with Solidity

● Aztec’s barretenberg allows to compile 
from a Noir program to an Ethereum 
contract
○ Other proving systems must supply 

their own implementation
○ Same goes for verification with a 

different smart contract platform



Verification with Solidity

● The proof can be passed to the Solidity 
verifier exactly as generated by the backend
○ No serialization or re-formatting is 

necessary
● This flow may differ with different proving 

systems and depends on the backend 
implementation being used with Noir

● Full example can be seen at 
https://github.com/vezenovm/simple_shield

https://github.com/vezenovm/simple_shield


Future Work 



Here’s the timeline

Verify Proof

Recursive proofs inside of 
Noir

Effective Tooling

Improve the development 
experience through REPLs, 
IDE integrations, 
debugging tools

Noir Contracts

Noir-specific user-defined 
data type to enable 
public/private smart 
contracts in Noir
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Simple Circuit Syntax

Noir offers simple syntax with 
optimized functionality

● Noir aims to be Rust-like in its syntax while 
abstracting away low-level concepts

● Complex cryptographic functionality can be 
supplied by the proving system through the stdlib 
rather than through new Noir libraries

● All smaller data types translate to a Field type

○ Can constrain on any of the data types Noir 
supports


