
Noir Programming Language
Private Value Transfer in 10 Lines

Maxim Vezenov
Software Engineer, Aztec Network

Introduction to Noir

Section 1

What is Noir and what is new?
Noir is more flexible in its design than other domain specific languages

● Compiles down to an intermediate representation
○ Abstract Circuit Intermediate Representation (ACIR)
○ The IR can to be compiled down to any NP complete language

● Enables the decoupling of the backend proof system and the
language
○ Currently has one fully integrated backend that utilizes Aztec’s

barretenberg library
○ Plans for future integrations include arkworks proof systems such as

Marlin and Groth16

● Only DSL that currently has fully integrated proving system
optimizations
○ Custom gates

What is the benefit?

● A universal ZK DSL based on open source technology
○ Noir is Rust-based and draws on arkworks for its Field types

● Further collaboration in the ZK space that enables an open standard for ZK
circuit construction
○ The EVM has created value that has extended past Ethereum itself

● Proof systems can supply a fixed list of optimized black box functions
○ These functions act as a standard library that the frontend can access
○ pedersen, merkle_membership, sha256, schnorr_verify

● Lower barriers to circuit development
○ Incorporate cryptographic safety into the language itself

compile, build,
prove, verify

Text
representing the
circuit and
program inputs

IR that can
compile down to
arithmetic
circuit or R1CS
constraints

Solve witness
and create proof
(PLONK,
Groth16)

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1aq82iYCDN9IXvXmearuPC6YF6Z8w8oVl

Private Transfer Circuit

Section 2

Private Transfer Circuit

● Rust-like syntax
● All inputs to main are private by default

○ The `pub` keyword makes them public,
meaning they must also be supplied to the
verifier

● One native Field type
○ Smaller data types such as u32 ultimately

translate into a Field

Standard Library Functions

● Use the scalar_mul module to find the public key
from the private key

● Hash the public key and random secret to hide the
note commitments origin

● The standard library has multiple hash functions
○ Pedersen
○ Blake2s
○ Sha256
○ MiMC

Check Merkle Membership

● First, generate the nullifier to prevent double
spends
○ This is public and returned from the circuit

● Standard library function for merkle membership
○ Currently very Aztec specific and limited to

Pedersen for node compression
● Generics have recently been added with first-class

functions on the timeline
○ Users will be able to specify which hasher

they would like for their merkle membership
proof

Additional Features

● Arrays, Tuples, Structs
● Submodules
● Global consts
● For loops
● If Statements
● Logical and Bitwise operators
● Generics

Simple Circuit Syntax

● Noir aims to be Rust-like in its syntax while
abstracting away low-level concepts

● Complex cryptographic functionality can be
supplied by the proving system through the stdlib
rather than through new Noir libraries

● All smaller data types translate to a Field type

○ Can constrain on any of the data types Noir
supports

Proving and Verifying in Typescript

● NoirJS
○ Enables compilation of a Noir program
○ Can read an ACIR from file generated by

nargo
● Specify the program’s ABI directly in Typescript

○ ABI parameters can be a NodeJS number
type or hex string

Proving and Verifying in Typescript

● We set up the prover and verifier using a
Typescript wrapper around the proving system
○ @noir-lang/barretenberg

● As the proving system is compatible with the ACIR
it just needs this as a parameter to set up a prover
and verifier

● The ABI is used to solve the circuit’s witness and
ultimately generate the proof

● The public inputs are prepended to the proof
○ Formatted as 32 byte hex values
○ The inputs remain in order of how they are

specified in the ABI

Verification with Solidity

● Aztec’s barretenberg allows to compile
from a Noir program to an Ethereum
contract
○ Other proving systems must supply

their own implementation
○ Same goes for verification with a

different smart contract platform

Verification with Solidity

● The proof can be passed to the Solidity
verifier exactly as generated by the backend
○ No serialization or re-formatting is

necessary
● This flow may differ with different proving

systems and depends on the backend
implementation being used with Noir

● Full example can be seen at
https://github.com/vezenovm/simple_shield

https://github.com/vezenovm/simple_shield

Future Work

Here’s the timeline

Verify Proof

Recursive proofs inside of
Noir

Effective Tooling

Improve the development
experience through REPLs,
IDE integrations,
debugging tools

Noir Contracts

Noir-specific user-defined
data type to enable
public/private smart
contracts in Noir

Thank you!

Maxim Vezenov
Software Engineer, Aztec Protocol

maxim@aztecprotocol.com

 @maximvezenov

Simple Circuit Syntax

Noir offers simple syntax with
optimized functionality

● Noir aims to be Rust-like in its syntax while
abstracting away low-level concepts

● Complex cryptographic functionality can be
supplied by the proving system through the stdlib
rather than through new Noir libraries

● All smaller data types translate to a Field type

○ Can constrain on any of the data types Noir
supports

