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Ethereum Clients

Three Key Things To Know



Commonalities           Differences

Networking
- Peer discovery & management
- Sybil resistance
- DoS prevention
- Peer scoring
- Gossiping new data

Blockchain
- Tracking the block tree
- Re-org handling
- Operation/transaction mempools
- Sync
- State + transition function

Pretty much all the specific technologies
- LibP2P vs DevP2P
- Discv5 vs Discv4/DNS
- SSZ vs RLP
- Sha256 vs keccak
- BLS vs ECDSA



Slot Timing

+0s
Block

New slot begins every 12s.

Selected producer should 
create and publish their 
block as quickly as 
possible.

+4s
Attestations

Validators scheduled for 
this slot produce an 
attestation.

Attests to validator’s view 
of the current chain head.

Produced earlier if block 
already imported.

+8s
Aggregates

Aggregators gather 
individual attestations into 
aggregates.

Can only aggregate 
matching attestations.



Key Differences - Large Execution State

● Storing world state efficiently is a huge challenge for execution clients

● Multiple different strategies for
○ Syncing
○ Pruning
○ Indexing

● Major performance challenges



The Post-Merge World



Deployment Model

Consensus Client Execution Client
Engine API

LibP2P DevP2P

Blocks, Attestations, 
Slashings, Exits Transactions, Sync Data



Solution: Light Consensus Client

Build a light consensus client into execution clients.

Pros:
● Simple for users to run a basic node
● Reduced system requirements

Cons:
● Will always trail one slot behind head
● Not suitable for validator nodes
● Reduced security guarantees



Solution: Combine Clients

Combine the consensus and execution clients into a single executable.

Pros:
● Simple for users to start a new node

Cons:
● Bad for client diversity
● Dependency conflicts
● Increases coupling and cognitive load for core devs
● Encourages client scope creep



Problem: Real Deployment Complexity

Beacon NodeValidator 
Client

Execution 
Client

External 
Signer

Prometheus
Slashing 

Protection 
Database

Grafana mev-boost

Wallet



Solution: EthOS†

Move coordination up a layer by using/improving/building tools to manage configuration and 
integration of different clients and components.

Pros:
● Maintains decoupling of consensus and execution clients
● Decouples development model from deployment model
● Can include a full suite of functionality, monitoring etc
● Already exists in eth-docker, eth-wizard, DAppNode, Stereum and others

Cons:
● Hides complexity rather than removing it
● Extra layer means yet more software to build and maintain

† Not actually an OS

https://github.com/eth-educators/eth-docker
https://github.com/stake-house/eth-wizard
https://www.dappnode.io/
https://stereum.net


More Problems & Opportunities



Problem: Data Duplication

Consensus clients and execution clients both store the execution payload data.

All those transactions add up to a lot of disk space.

Both clients need to access the data to send to peers and handle API requests.



Solution: New engine API Methods

engine_getPayloadBodies - https://github.com/ethereum/execution-apis/pull/146 

Efficiently request execution payload bodies from the execution client.

Pros:
● De-duplicates transaction data
● Batch requests for data make it reasonably efficient

Cons:
● More requests for the execution client database to handle
● Increases coupling between clients

https://github.com/ethereum/execution-apis/pull/146


Solution: Prune Historic Blocks

Store duplicate transactions but prune blocks aggressively.

Consensus specs only require storing ~5 months worth of blocks. 

Pros:
● Simpler than deduplicating transactions
● Consensus disk space requirements become almost static

Cons:
● Doesn’t help archive nodes
● Older blocks become harder to find / potentially unavailable.



Problem: Non-canonical Blocks and Re-orgs

EL can return ACCEPTED and not execute non-canonical blocks
- Risks putting the consensus client into optimistic sync mode
- Might cause validator duties to be missed
- May make switching to that fork slower

Take-away: 
- Short re-orgs need to be highly optimised to avoid missing validator duties
- Long re-orgs should be very rare and may not need to be so optimised



Learn from “the other side”

Embrace multi-component

Clean up some loose ends



Thank you!

Adrian Sutton
Lead Blockchain Engineer, ConsenSys

adrian.sutton@consensys.net

  @ajsutton


