
Post-Merge Client Architecture

Adrian Sutton
Lead Blockchain Engineer, ConsenSys

About Me

Everything you ever need to know
about Ethereum clients…

Everything you ever need to know
about Ethereum clients…

In 25 minutes…

Everything you ever need to know
about Ethereum clients…

In 25 minutes…

Hmm…

Ethereum Clients

Three Key Things To Know

Commonalities Differences

Networking
- Peer discovery & management
- Sybil resistance
- DoS prevention
- Peer scoring
- Gossiping new data

Blockchain
- Tracking the block tree
- Re-org handling
- Operation/transaction mempools
- Sync
- State + transition function

Pretty much all the specific technologies
- LibP2P vs DevP2P
- Discv5 vs Discv4/DNS
- SSZ vs RLP
- Sha256 vs keccak
- BLS vs ECDSA

Slot Timing

+0s
Block

New slot begins every 12s.

Selected producer should
create and publish their
block as quickly as
possible.

+4s
Attestations

Validators scheduled for
this slot produce an
attestation.

Attests to validator’s view
of the current chain head.

Produced earlier if block
already imported.

+8s
Aggregates

Aggregators gather
individual attestations into
aggregates.

Can only aggregate
matching attestations.

Key Differences - Large Execution State

● Storing world state efficiently is a huge challenge for execution clients

● Multiple different strategies for
○ Syncing
○ Pruning
○ Indexing

● Major performance challenges

The Post-Merge World

Deployment Model

Consensus Client Execution Client
Engine API

LibP2P DevP2P

Blocks, Attestations,
Slashings, Exits Transactions, Sync Data

Solution: Light Consensus Client

Build a light consensus client into execution clients.

Pros:
● Simple for users to run a basic node
● Reduced system requirements

Cons:
● Will always trail one slot behind head
● Not suitable for validator nodes
● Reduced security guarantees

Solution: Combine Clients

Combine the consensus and execution clients into a single executable.

Pros:
● Simple for users to start a new node

Cons:
● Bad for client diversity
● Dependency conflicts
● Increases coupling and cognitive load for core devs
● Encourages client scope creep

Problem: Real Deployment Complexity

Beacon NodeValidator
Client

Execution
Client

External
Signer

Prometheus
Slashing

Protection
Database

Grafana mev-boost

Wallet

Solution: EthOS†

Move coordination up a layer by using/improving/building tools to manage configuration and
integration of different clients and components.

Pros:
● Maintains decoupling of consensus and execution clients
● Decouples development model from deployment model
● Can include a full suite of functionality, monitoring etc
● Already exists in eth-docker, eth-wizard, DAppNode, Stereum and others

Cons:
● Hides complexity rather than removing it
● Extra layer means yet more software to build and maintain

† Not actually an OS

https://github.com/eth-educators/eth-docker
https://github.com/stake-house/eth-wizard
https://www.dappnode.io/
https://stereum.net

More Problems & Opportunities

Problem: Data Duplication

Consensus clients and execution clients both store the execution payload data.

All those transactions add up to a lot of disk space.

Both clients need to access the data to send to peers and handle API requests.

Solution: New engine API Methods

engine_getPayloadBodies - https://github.com/ethereum/execution-apis/pull/146

Efficiently request execution payload bodies from the execution client.

Pros:
● De-duplicates transaction data
● Batch requests for data make it reasonably efficient

Cons:
● More requests for the execution client database to handle
● Increases coupling between clients

https://github.com/ethereum/execution-apis/pull/146

Solution: Prune Historic Blocks

Store duplicate transactions but prune blocks aggressively.

Consensus specs only require storing ~5 months worth of blocks.

Pros:
● Simpler than deduplicating transactions
● Consensus disk space requirements become almost static

Cons:
● Doesn’t help archive nodes
● Older blocks become harder to find / potentially unavailable.

Problem: Non-canonical Blocks and Re-orgs

EL can return ACCEPTED and not execute non-canonical blocks
- Risks putting the consensus client into optimistic sync mode
- Might cause validator duties to be missed
- May make switching to that fork slower

Take-away:
- Short re-orgs need to be highly optimised to avoid missing validator duties
- Long re-orgs should be very rare and may not need to be so optimised

Learn from “the other side”

Embrace multi-component

Clean up some loose ends

Thank you!

Adrian Sutton
Lead Blockchain Engineer, ConsenSys

adrian.sutton@consensys.net

 @ajsutton

