
Nosy Neighbor
Automated Fuzz Harness Generation for Go Projects

David Theodore
Security Researcher, Ethereum Foundation

@dtheo/@infosecual

The Challenge - Find bugs in open source Go projects

The Challenge

Motivation? Ethereum loves Go

Ethereum has a significant dependance on Go projects
● Client Diversity Stats (clientdiversity.org - Oct, 4th 22)

○ Geth accounts for 82% of execution clients
○ Prysm accounts for 42% of consensus clients
○ Mev-boost accounts for 48% of blocks (mevboost.org - Oct, 6th 22)

■ is the currently the only production ready open source MEV subscription
client

These projects are systemically important for the ethereum network
● Important stuff is worth manual review - let’s just have them audited :)
● We do!
● The projects are “moving targets” with regular updates (~6 months between hard forks)
● Some of the projects are very large

○ Must run: beacon chain, execution chain, both layers have their own peer-to-peer
networks, large optimized databases for both of the EL and CL clients, support all
validator duties, the mempool… etc.

○ Don’t forget the entire EVM

● 3,191 Go files
● Excluding blank lines and

comments:
583K lines of code

Just how large is the
“Pure Go Ethereum Stack”?

Understanding Go’s Security Implications

The Investigation

Understand Go’s Security Implications

How can we harden Ethereum
against its significant dependance on
very large Go projects?

- Memory Safety (for the most part)
- Common mistakes in Go

- Infinite Recursive Calls
- Assignment to a nil map
- Methods that modify receivers
- “Shadow variables”
- Race Conditions
- Many more

-Q
uery

able

-Tes
table

Go thread sanitizer
- Compile with “go build –race ./…”
- Run it
- ++ ASAN, MSAN
- Running on Ropsten, Sepolia, Prater/Goerli

CodeQL, semgrep, gosec

-N
osy

 N
eig

hbor

Nosy Neighbor :)

How else can we cover 583K lines of code?

Automation - Nosy Neighbor

The Solution

Let's talk a little more about our problem
The Bad

○ Large attack surface (583K SLOC)
○ DOS’s are considered critical

■ usually ~3 CVSS (low severity) - eg. no RCE, no information disclosure
■ A chain liveness issue with Ethereum would be catastrophic, so a DOS is very bad

○ Client diversity is Go project saturated

The Good

○ RCE is rare
○ We have the source
○ Strongly typed
○ Panics / stack traces / failure reporting is very good
○ Incredible tooling - native testing/fuzzing support (>1.18)

We have everything we need to
automate fuzz harness generation!

● Fuzzing is natively supported and very easy!
○ Test Corpora is seeable, saveable,

automatically supported
○ Crashes automatically save off

offending cases
○ No need for healthchecker routines or

worrying about fuzzer destroying itself
○ Errors are descriptive
○ Automatically coverage guided

● AST is exposed via go/parser, go/ast
● Strong type attributes are exposed via

go/types
● Easy to fix up imports when editing Go
● What can we do?

We Can:

1. Parse all Go code in a repo to collect:
a. Package dependencies
b. Type declarations
c. Function declarations
d. Function interfaces (argument types, return types)

2. Generate valid fuzz harnesses for all functions that have types we
support

3. Fuzz, save off test cases with new coverage, save crashes and
their inputs

4. Profit
5. Repeat (on every commit!)

^ This is Nosy Neighbor

Nosy in Action

Nosy Neighbor

Introducing Nosy Neighbor
Nosy has three main steps to go from a repo URL to fuzzing

1. Initialization
2. Harness Generation
3. Fuzzing

Input required for each step is a
YAML file that contains:

● Target repo github URL
● Granch
● Go version
● “Ignore” declarations
● Package substitutions - why?

○ NOP’ing signature check
○ Neutering caches
○ Supporting CGO, native

crypto

Nosy’s Input: Target Config FIle

Nosy In Action - Init

● Builds a docker container with
○ A valid $GOROOT
○ Target repo & dependencies
○ Nosy dependencies

● Maps to target asset fuzzing_directory
on host which holds
○ Entire go root that this container

produces
○ Fuzzing scripts, corresponding

outputs
○ Test corpora that finds new

coverage
○ Test cases that cause crashes

Nosy In Action - Generate Harness
● Copies various scripts into target’s asset directory
● Spits out a one-liner that runs inside the fuzzing environment container
● Generates fuzz harnesses for all packages in the target repo

● Generates fuzzing scripts and provides one-liner to
start fuzzing container

● Will automatically round-robin all supported
functions
○ Fuzz
○ When new coverge found- add test to corpora
○ When a crash/panic/signal- save test case to

targets asset directory shared with host
○ Emits one-liners in the logs that can be used

to rerun the failing test case for triage/debug

Nosy In Action - Fuzz

Nosy In Action - Example Findings

● When crashes/panics/signals happen the offending test cases are
copied to the target’s asset directory

● The root cause of all of these crashes are copied from real bugs that
Nosy found

Nosy In Action - Example Findings

Example Fuzz Harnesses - Simple Function Function

go/testing already knows how to provide us with a good number of valid built-in types

Example Fuzz Harnesses - Method (and Receiver)

● go/testing does not support complex
structures

● Public Nosy defaults to using Trail of Bit’s
go-fuzz-utils for filling complex types
○ github.com/trailofbits/go-fuzz-utils
○ Complex struct filling is recursive
○ Other fill methods are supported and

configurable (fzgen, custom fill
routines, nosy proprietary- not open
source yet)

https://github.com/trailofbits/go-fuzz-utils

Example Fuzz Harnesses - Custom Constructor

● Nosy supports custom constructors
● Shout out to fzgen for the idea (and a lot of the

code)
○ https://github.com/thepudds/fzgen

● How does it know what can be used as an
object’s constructor?
○ Takes subfields as args, returns:

■ The target object
■ The target object, err

● Notice that Nosy generates valid typed args to
the constructor and its method :)

https://github.com/thepudds/fzgen

Nosy’s Evolution - Mistakes/Learnings

● Nosy versions
○ V1 python - regex from hell
○ V2 go/parser - AST object is a pain
○ V3 go/types - fzgen did the heavy lifing so rewrite was minimal

● Filesystem suicide
○ Why we use docker

● Various fill libraries
○ Need graceful exit when not enough data to fill all inputs
○ Need to support as many types as possible
○ Ultimately a custom lib is the way to go if you really care about a project

Nosy’s Evolution - Future Features
● Auto corpora bootstrap

○ Instrument all supported functions in regular use of the target
○ Fuzz functions as they are used in real time, mutating real calls

● Support Go Channel Objects
○ Would support significantly more functions

● Auto object fuzzing
○ Roundrobin all methods of an object
○ Detect race conditions easily

● Lock down container networking
● AST walk to

○ Pre-filter/neuter filesystem writes
○ Find chan objects, spoof their use
○ Conduct reachability analysis

● Add final task - test case minimization, coverage analysis

Nosy Neighbor - Open Source Soon™

Blame the snake - Broadbanded Copperhead

● Soon for real though - will open source within 24 hours
● Follow @infosecual github/twitter for repo links

Big thanks to:
fzgen, TOB, z3nchada, jtraglia, gofuzz folks, gophers slack

David Theodore
Security Researcher, Ethereum Foundation

 @infosecual

Questions?

