o8y kelvin

LAITICE

HOW TO BUILD VERY CRAZY
THINGS ON ETHEREUM

THINGS LIKE

WORLDS WHOSE RULES RUNS
ON THE EVIVI, AND WWHOSE
STATE IS SECURED BY
ETHEREUM

nlily

69 AUTONOMOUS
WORLDS

: BUILDING LARGE
ON CHI-\IN PROJECTS IS HARD

TODAY: TWO NEW TECHNOLOGIES
FROM @ AND (o> TO ENABLE
AUTONOMOUS WORLDS

ol
I‘" D AN ENGINE FOR
AUTONOMOUS WORLDS

— SOLVING ALL THE HARD
@ PROBLEMS OF BUILDING
ON-CHAIN GAMES

ADDING

CONTENT

INTER
OPERABILITY

INTER
OPERABILITY

ADDING

CONTENT

| Contracts

OLD APPROACH

struct Monster {

u1nt8 tgp
SIAI = SYNC
uint32 tt ck:

}

struct Monster {
uint8 type;
uints?2 health;
uint32 attack; st

custom struct per entity type

Contracts

struct Monster {

et e F 0 é “;, r :
uint8 type;
S IAI E SY NC

uint32 attack;

interface Monster {
type: number;
health: number;
attack: number;

} interface Monster {

Client

type: number;
health: number;
attack: number;

}

duplicate structs on the client

STATE SYNC

function getMonsters()
public view returns
(Monster[] memory):;

load initial state via custom getter functions

Contracts

struct Monster {
uint8 type;
uint32 health;
uint32 attack;

function getMonsters() public view
returns (Monster[] memory);

Client

interface Monster {
type: number;
health: number;
attack: number;

OLD APPROACH
STATE SYNC

event MonsterHealth(
uint2b56 id,
uints2 health,

bE

update client state via custom events

Contracts

struct Monster {
uint8 type;
uint32 health;
uint32 attack;

function getMonsters() public view
returns (Monsters[] memory);

event MonsterHealth(
uint256 id,
uint32 health,

Client

interface Monster {
type: number;
health: number;
attack: number;

contract.on(
"MonsterHealth",
(id, health) => {

monsters[id].health =

health;

OLD APPROACH Contracts

struct int {

ADDING CONTENT Lot Wi

function getPlants() public view
returns (Plant([] memory);

event PlantHealth(

struct Plant { e,
uint8 type;
uints2 health; Client

} —

type: number;
health: number;

contract.on(
Aoes ey

(ia, healfh) => {

[id] .health = health;
1

modify entire network stack to handle new content)i

OLD APPROACH
INTEROPERABILITY

ERC20

ERC721
ERC1155

manual or via existing (DeFi) interfaces

NEW APPROACH

%+ YOU

FUN
CREATIVITY

DESIGN

COMMON
HARD

PROBLEMS

ENTITY
COMPONENT
SYSTEM

NEW APPROACH

uint2o56 entity;

an entity is just a uint256 id

NEW APPROACH

Component.sol

entityl: valuel,
entity2: value?2,
entityd: valued,

entityN: valueN,

components link entities to values

MoveSystem.sol

“Move entity left”

PositionComponent.sol PositionComponent.sol

entity: { x: 13, y: 37 } entity: { x: 12, y: 37 }

systems execute logic based on components

TransferSystem.sol

“Transfer 1 DAI”

BalanceComponent.sol BalanceComponent.sol

addressl: 42 DAI addressl: 41 DAI
address?2: 0 DAI address?2: 1 DAI

existing standards (ERC20/721/...) could almost be called ECS

NEW APPROACH
STATE SYNC

registerValueSet(value)

Componentl.sol

Component2.sol World.sol

components reqgister state updates in the world

NEW APPROACH

STATE SYNC
emit ValueSet(value)

Componentl.sol

Client

Component2.sol World.sol

client listens to a single world event stream

NEW APPROACH
STATE SYNC

new Component(id): defineComponent(id):

CONTRACTS CLIENT

NEW APPROACH
STATE SYNC

emit ValueSet(value)

Componentl.sol Indexer

Component?2.sol World.sol

Client

generic indexers can reduce RPC load

NEW APPROACH
ADDING CONTENT

g e 1100

30

s

4 W
Fighter

entities are collections of component values

NEW APPROACH
ADDING CONTENT

“ gzﬁéggent 8 @ O

,.l;;iiill Attack
Dragon
Movable -|: rue
Haa W= Component
- add entities by setting new component values

NEW APPROACH
ADDING CONTENT ek

- -
g "=
- -
510

,f Attack
I

Component

Defense tower

add entities by recombining existing components

NEW APPROACH
ADDING CONTENT

Healing
Component

Health
Component

Attack
Component

Healing Healing
Shrine Healer Potion

Health

Health Consumable

Position Position

Movable

add entities by adding new components

INTEROPERABILITY

AL

NEW APPROACH
INTEROPERABILITY

INTEROPERABILITY
NEEDS INTERFACES
TO SCALE

NEW APPROACH
INTEROPERABILITY

@H-ﬂ@

MUD is an interface for on-chain worlds

INTEROPERABILITY

ERC
72

interface
for ownership

“How many entities does this address own?”

balanceOf (address) ;

“Who owns this entity?”

ownerOf(uint256):

NEW APPROACH
INTEROPERABILITY

“Give me all movable attack entities owned by this address”

MUD |
HasValue(Owner, address),

Has (Attack),

interface Has (Movable)
for anything) ;

el
G MU s ceweonose

s T 9

e e e

IS GENRE AGNOSTIC

SKY
STRIFE

ON-CHAIN RTS

39 COMPONENTS

22 SYSTEMS

O NETWORKING CODE

UNANOUNCED

ON-CHAIN VOXEL GAME
8 COMPONENTS

/7 SYSTEMS

O NETWORKING CODE

Golem

B
-

A

L

o i =
M B
Position
Movable
Stamina

Combat

Inventory

341d1S AS

VOXEL GAME

Grass

_, STATE SYNC
ADDING CONTENT
INTEROPERABILITY
ALL PROBS SOLVED

FULL NODES ARE
GREAT

WITH A FULL NODE YOU CAN:
« ACCESS STATE OF THE CHAIN DIRECTLY
FROM THE NODE DB
o SIMULATE TRANSACTIONS

« TRADITIONAL DAPP CLIENTS ARE NOT
FULL NODE!

« THEY RELY ON INFURA/ALCHEMY TO
SERVE THEIR DATA

« KEEP A COPY OF THE STATE CLIENT
SIDE, OFTEN WITH LOTS OF CODE

CLIENT CONNECTS TO FULL NODE

CACHE STATE IT IS INTERESTED IN
KEEPS IT IN SYNC

WITH LOTS OF CUSTOM CODE AND
INDEXERS

full-node

browser nm i
SLOW NETWORK

client code REQUESTS
indexer

i
Lk

browser

WHY NOT??
client code « RUN INDEXER CLIENT

indexer SIDE
- E o« SIMULATE TXS
« NO NETWORK DELAY
Hi [y

full-node

AFTER SYNC!

FULL NODES ARE EXPENSIVE!
BANDWITH, STORAGE

1. UX-HURTING NETWORK CALLS

2. WAIT FOR MINED TX TO SHOW SIDE
EFFECTS

3. REMOTE INDEXERS

CAN WE DO
BETTER?

MOSTLY STANDALONE, UNLIKE

= AUTONOMOUS WORLDS ARE
@ TRADITIONAL DAPPS

SIMULATING TX REQUIRES KNOWING
STATE OF OTHER SMART CONTRACTS, LIKE
ERC-20s ON BOTH SIDES OF THE POOL

namespaced
full-node

MUD SYNCS A WORLD, A NAMESPACE FOR
DATA AND LOGIC

DATA = COMPONENTS

LOGIC = SYSTEMS

& NUD

o INITIAL SYNC VIA MIUD INDEXER OR
FULL NODE

« KEEP STATE UP TO DATE VIA FULL NODE
OR MUD STREAM SERVICE

struct Position { COMPONENTS ARE
int64 x: SELF-DESCRIPTIVE.
int64 y; MUD READS THEIR ON.-
} CHAIN SCHEMA

FULL-NODE

contract OxA2F..1
OxO: OxFAB6....81
Ox1: Ox1AFO....D1
contrPaet ExXAEL. .4
OxO: OxO01s....6A

MUD

Ox0: [Position(12,45), Health(200)]
Ox1: [CanFly(), Health(10)]
Ox2: [Position(1, -4), Balance(100)]

RUN COMPLEX QUERIES ON
COMPONENTS WITHOUT NETWORK DELAY

runQuery(Has(Position),
HasValue(Health, { balance: 10 }

TX

LOCAL
EVM

SIDE
EFFECTS

RECONCILE

Move(0x01, {x: 10, y: -3}) — g Hi

runEVM(tx, state) l
l chain
0x07: Position(x: 10, y: -3} l

Predicted side effects OK! «— OxDO0...FA2

X Move(OxFE, {x: -20, y: 4})—» Hi

LOCAL ’ l

runEVM(tx, state)

EVIVI
ame l chain
EFFECTS OxFE: Positiin[x: -20,y:4}) l

RECONCILE Wrong! Revert and apply <— 0xA4...8C2

« READ / INDEX COMPONENTS

(1 7]
WITHOUT NETWORK DELAY
o SIMULATE TX WITHOUT

NETWORK DELAY

EXTENDING
WORLDS WITH MUD

DEVS CAN EXTEND PROTOCOLS VIA
SMART CONTRACTS AND NEW CLIENT —

>df

HOWEVER, DEVELOPERS NEED TO SHIP
NEW CLIENTS AND INDEXERS

USERS ALSO NEED TO KNOW WHERE
THOSE CONTRACTS AND NEW CLIENTS

ARE

1ST PARTY
VS
SRD PARTY

EXAMPLE:
DARK FOREST EXTENSION: PLANETS CAN

BE “REWARDING”, CAPTURING THEM
GIVES YOU

PROBLEM:

HOW DO USERS KNOW THIS EXISTS?
WHERE ARE THE CONTRACTS?

HOW DOES THE CLIENT KNOW WHAT TO DO
WITH THE DATA?

INDEXERS?

CAN WE DO
BETTER?

il

@ World.sol

\'[e OR
SRD PARTY

deploy
>

CREATORS OF THE WORLD
HAVE NO POWER

* - CAN CREATE
COI\IIPONENTS AND
SYSTEMS

— ANYONE CAN CREATE NEW
@ “’I U D COMPONENTS (DATA) AND
SYSTEMS (LOGIC) THAT:

ARE ACCESSIBLE IN THE CLIENT

ARE INDEXED

ARE IN THE DEBUGGER

CAN BE EXECUTED IN THE LOCAL EVM

ALL SYSTEMS CAN
READ ANY
COMPONENT

ONLY RULE:
COMPONENTS WHITELIST
SYSTEMS THAT CAN
WRITE TO THEIR STATE

VERY IMPORTANT IDEA:
AUGMENTED REALITY

BEYOND THE CORE CONMIPONENTS AND SYSTEMS

ALL PLAYERS BELIEVE IN, IT POSSIBLE TO CREATE
AUGMENTED REALITY LAYERS THAT A SUBSET OF
PLAYERS WILL ENGAGE WITH,

LET’S ILLUSTRATE

COMPONENTS

Position
Movable
Resource

SYSTEMS

Move ()
PickupResource
Drop()

Core Team

Ox04

(ﬂ- Core Team

's" . Ox02

T o &

Ox01

Ox03

Ox06

Ox05

oy

*‘iﬂ‘fa

Ox07

i

Ox08

COMPONENTS

Core Team @
Ox01 Move ()

Ox02

w2 T
la

.,
PO

Ox01
Ox04

Ox06

SYSTEMS oo

Move () 3 ; g -
PickupR (ore Team -
szl-gpl(l)p esource() 6‘!‘*«!

Ox07

i

Ox08

COMPONENTS

core Tean 1T

Ox01
Resource

Ox03 Oxé)'?
Stake =
Team TTT & | '-;-.,?ﬁ
Board 0X04 !f'g

Ox06

SYSTEMS 0x05

Meve() .V;Qﬁ 0x08
PickupResource() Core Team :*‘
Drop() ol

Challenge() AcceptChallenge() Resolve()j— Team TTT

COMPONENTS

Position
Movable
Resource

Stake

Board

SYSTEMS

Move ()
PickupResource

Drop()

Core Team

éz:}- Core Team o

INSTALL?
Challenge()

AcceptChallenge()
Resolve()

Stake

Board

COMPONENTS

Ox02

Vo G
Core Team & -
Ox01 Move () T |
sovsy Y
&
0x03 L Ox07 Challenge()
& F g tx.value: 1 $ETH
Team TTT T Ox01 n;—#’g
. f
@&,
Ox06
@&
SYSTEMS .

I\;l?sz)R 0 Core Toam & r% Ox08
1CKU esource :
Drop(? &'F*i &

Challenge() AcceptChallenge() Resolve() = Team TTT

COMPONENTS

Position
Movable
Resource

Team TTT
@

Core Team

SYSTEMS

Move ()

PickupResource() Core Team ‘dﬁﬁfi
Drop() |

Challenge() AcceptChallenge() Resolve() = Team TTT

Ox02

G

s i

2

Ox01
Ox07
§ 0x09
S Stake (1)
‘ﬁiﬁ Board()

AcceptChallenge()

tx.value: 1 $ETH

Ox08

COMPONENTS

Pos1t10n
Movable Core Team
Resource
Stake
Team TTT
Board 0x04

SYSTEMS

Ox05

Move () 5 . i -,.éﬁ
PickupR ore Team o
D;ng§ esource @?&‘

Challenge() AcceptChallenge() Resolve() = Team

Ox02

Ox06

TTT

Ox07

Ox08

2.
g

Drop()

Ox01

Ox09

COMPONENTS

Pos1t10n
Movable Core Team
Resource
Stake
Team TTT
Board 0x04

SYSTEMS

Ox05

Move () 5 . i -,.éﬁ
PickupR ore Team o
D;ng§ esource @?&‘

Challenge() AcceptChallenge() Resolve() = Team

Ox02

Ox06

TTT

Drop ()
Ox07

2.
g

Ox08

Ox01

& &

Ox09

COMPONENTS

Pos1t10n
Movable Core Team
Resource
Stake
Team TTT
Board 0x04

SYSTEMS

Move ()
PickupResource() Core Team
Drop()

Challenge() AcceptChallenge() Resolve() = Team

Ox05

S
i

Ox02

Ox06

TTT

Ox07

Ox08

2

Drop()

Ox01

& &

Ox09

COMPONENTS

Pos1t10n
Movable Core Team
Resource
Stake
Team TTT
Board 0x04

SYSTEMS

Move ()
PickupResource() Core Team
Drop()

Challenge() AcceptChallenge() Resolve() = Team TTT

Ox05

S
i

Ox02

Ox06

Drop() Ox01
Ox07

Ox08

2

Ox09

COMPONENTS

Pos1t10n Drop() Resolve()
Ox02 !1
Movable Core Team &, =
*'Fb
Resource

Ox01
0’;7 @& |oxog
Stake v 2. &
Board]_ TeGSXGTJZT ’*-ﬂi‘& @@
Ox06
&)
SYSTEMS oo
I\;I?\IzC)R O Core Team - Ox08
ickupResource
Drop(? t'! &

Challenge() AcceptChallenge() Resolve() = Team TTT

COMPONENTS

Position
Movable
Resource

Team TTT
@,

Core Team

SYSTEMS

Ox05

Move () A 3 ; v:;éh
PickupR ore Team a?
nigng esource ﬁ*q

Challenge() AcceptChallenge() Resolve()j— Team

Ox02

Ox06

transfer 1$ETH
i

Ox01

Ox07 @@43%u0x09
5. @
iy

7 ee |

Ox08

TTT IS JUST LIKE
TENNIS! IT°S AN
AUGMENTED REALITY

OTHER PLAYERS

COMPONENTS

Posltlon

Movable

Resource

SYSTEMS

Move ()

Core Team

Ox04

PickupResource() Core Team
Drop()

Ox06
WTF??
Ox05
]

.

Ox02

Ox08

AUGMENTED REALITIES:
CAPITALISM

COMPETITION
MINI-GAMES

ALL PERMISIONLESSLY
WORLD IS OWNERLESS

ulls

SO YOU INANT TO BUILD
AN AUTONOMOUS WMNORLD

@KELVINFICHTER
BUILDING THE OPTIMISM COLLECTIVE

uil

65" @ GOOD LUCK

uil

65' @ JUST KIDDING

SOMETHING NEW

INTRODUCING
THE OP STACK

SOMETHING NEW

INTRODUCING
THE OP STACK*

*we need like three months to write the docs

THE OP STACK

ROLLUPS
GONE
MODULAR

THE OP STACK

THREE
SIMPLE
LAYERS

OVERVIEW

EXECUTION

SETTLEMENT

THE OP STACK
OVERVIEW

EXECUTION

SETTLEMENT

THE OP STACK
OVERVIEW

EXECUTION

SETTLEMENT

THE OP STACK
OVERVIEW

EXECUTION

SETTLEMENT

THE OP STACK
CORE CONCEPTS

MODULAR THEORY
IN PRACTICE

THE OP STACK
CORE CONCEPTS

DATA AVAILABILITY

PUBLISH DATA ANYWHERE

THE OP STACK
CORE CONCEPTS

DERIVATION

TRANSACTIONS FROM ANYTHING

THE OP STACK
CORE CONCEPTS

EXECUTION

RUN EVERYTHING

THE OP STACK
CORE CONCEPTS

SETTLEMENT

SEND ASSETS EVERYWHERE

THE OP STACK
SHARED SEQUENCING

NO SEQUENCER?
NO PROBLEM.*

*currently a very big problem

THE OP STACK
SHARED SEQUENCING

]
0 CIi

THE OP STACK
SHARED SEQUENCING

THE OP STACK
SHARED SEQUENCING

M:

E
\E
(34— 1])

AL

#

THE OP STACK
SHARED SEQUENCING ..

e

THE OP STACK
MOTIVATION

WHY MAKE IT
FOSS?

THE OP STACK
MOTIVATION

BECAUSE
IT HAS TO BE.

THE OP STACK
MOTIVATION

THE OP STACK
MOTIVATION

THE OP STACK
MOTIVATION

THE OP STACK
CLOSING REMARKS

GO NUTS,
BUILD SOMETHING CRAZY.

AND THANKS
FOR COMING TO
MY TED TALK

® OFCRART

POWERED BY MIUD
RUNNING ON OP STACK
PROCEDURAL WORLD
RELEASED TODAY!

https://docs.google.com/file/d/19XVzfy8unRqrGSpkyoY6_61CW1AMavoF/preview

4PM TODAY
HACKER BASEMENT

o

s
AN ENGINE FOR
AUTONOMOUS WORLDS

MUD.DEV

|-I|.

OP STACK

LAITICE

