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Some context on this talk

I’ll be talking about the theory behind modular rollup 
architecture. The OP Stack is a software stack that turns 
this theory into practice. I don’t like talking about theory 
alone, so I’ll be using the stack to keep this talk grounded.

Also I’m going to use TypeScript types, TypeScript is god 
tier don’t @ me. I hope you enjoy!
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Isn’t that funny? We can work on things for a long time 
before we really start to understand what we’re actually 
building. Anyway.
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Between 2021 and 2022, we started to understand rollups 
more deeply. We first came to realize that the proof should 
be fully separated from execution.

● Optimism’s EVM Equivalence upgrade (Nov ‘21)
● Arbitrum’s Nitro upgrade (Aug ‘22)
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We then also came to realize that we could break out the 
data availability layer.

● Metis forked Optimism and added a DA committee
● Arbitrum releases Nova with a DA committee
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Isn’t that just modular blockchains?

Yes. But it was the theory of modular blockchains actually 
being put into practice. Instead of fun charts describing 
how different pieces might fit together, this was software 
actually fitting these pieces together!
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It was time to make things official

This was modular blockchain design being put into 
practice, but it was messy and haphazard.

You know what time it is!

Formalization time!

Like, loosely formalized. I never graduated college.
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Beep boop, bias warning

I’m going to start using the abstractions that we defined as 
part of the OP Stack. I think these abstractions are good. 
Deal with it!
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● Ethereum (via calldata)
● Ethereum (via 4844)
● Celestia
● A stack of post-its
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Derivation is the more interesting one

The derivation layer takes the data availability layer and the 
current state of the rollup and produces Engine API 
payloads.

Why Engine API? One of those OP Stack opinionated things. 
Already standard in Ethereum clients and makes block 
building easier.
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Derivation in Bedrock

Optimism derives data from three locations:

1. Sequencer data posted to a specific address
2. Deposits sent to the Portal contract
3. L1 block data itself

Each of these get translated into Engine payloads
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Want to build a rollup?
● Read sequenced transactions directly from tx data
● Read deposit transaction data from events
● Read block data and system generate transactions
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This abstraction is ridiculously powerful.

Let’s look at a toy example.

Any time there’s a Uniswap swap event, we derive an L2 
transaction that includes the assets and amount swapped.

Each transaction updates a value in a smart contract that 
keeps a running tally of total volume. What does that kinda 
sound like?
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This abstraction is ridiculously powerful.

An indexer!

Are indexers just rollups?
Who knows.
Whatever.
Anyway, you get it.
You can do a lot with this.
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It’s the interesting part of your state transition function.
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Derivation and execution work together

These two layers work together to form the state transition 
function loop.

1. Wait for a new element in the DA layer list
2. Run derivation function

a. If it returns null, return to step 1
b. If it returns a payload, pass it into the execution 

function, update the state, return to step 2



Derivation and execution work together

Here’s that same loop drawn out:
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Just because we’re doing the EVM doesn’t mean you 
have to do the EVM too

You have an immense amount of flexibility with this design.

● Bitcoin?
● Game Boy?
● Python interpreter?

The sky’s the limit.
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Settlement

Here’s how we’ll define it for the sake of the OP Stack:

Settlement is a view that another chain has of your chain.

It’s about making claims about the state of your chain to 
another chain and being able to back those claims up.



Settlement needs a function too!



Settlement needs a function too!

You can make all sort of claims, but most commonly you’ll 
make a claim about the “state root” of the L2.



Settlement needs a function too!

You can make all sort of claims, but most commonly you’ll 
make a claim about the “state root” of the L2.



How do we make this function work?



How do we make this function work?

Look at this carefully.



How do we make this function work?

Look at this carefully. State is a given, so that’s fine.



How do we make this function work?

Look at this carefully. State is a given, so that’s fine. 
Derivation and execution could be implemented on-chain, 
but we bypass that with fault proofs or validity proofs.
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It’s another function!
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getBlobByIndex formalizes something important. First, 
the ability to resolve this function clearly depends on the 
actual availability of the DA. Second, this function also 
depends on the mechanism by which we prove that the 
blobs are correct.

Oooo important formalization
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Lot’s of content there. But not too many components!
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Build your dream chain

● Bitcoin Plasma?
● Bridge Rollup with multiple DAs and settlement layers?
● Another parallelized VM?



Literally build whatever, just fit 
the APIS!



That’s the whole talk
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