
Hunting and Monitoring for
On-Chain Attacks

Christian Seifert
Researcher-in-Residence, Forta Foundation

Dmitry Gusakov
Automation Lead, Lido

About us

Automation Lead at Lido
Building solid on-chain and off-chain

monitoring tools
Responsible for the quality of major Lido

products

Prior to Lido worked for 6 years as a
Quality and Automation Engineer

Quality assurance
Security testing

 @d_gusakov @Gusakov_dv

PhD in Computer Science from Victoria
University of Wellington, NZ

Researcher-in-Residence at the Forta
Foundation

Analyzing attacks
Working with community to strengthen

attack detection

Prior to Forta worked at Microsoft for 14
years on the Defender product line

Security Research
Data Science

 @cseifert @christian_forta

Web3 is getting hacked!

Tornado Cash Funding

Inverse Finance
($1.2M)

Suspicious Contract
Creation

Flashloan
Flashbot Tx

Tornado Cash Money
Laundering

Tornado Cash Funding
Jun-16-2022 08:45:36 AM +UTC - https://etherscan.io/address/0x7b792e49f640676b3706d666075e903b3a4deec6#internaltx

https://etherscan.io/address/0x7b792e49f640676b3706d666075e903b3a4deec6#internaltx

Suspicious Contract Creation
Jun-16-2022 08:47:50 AM +UTC - https://etherscan.io/tx/0xfb5a4d1aef98458f673f301c2e713613662ad621e8f57065a4da58a6401c0b4d

https://etherscan.io/tx/0xfb5a4d1aef98458f673f301c2e713613662ad621e8f57065a4da58a6401c0b4d

Flashloan/ Flashbot Usage
Jun-16-2022 08:47:58 AM +UTC - https://etherscan.io/address/0x7b792e49f640676b3706d666075e903b3a4deec6#internaltx

https://etherscan.io/address/0x7b792e49f640676b3706d666075e903b3a4deec6#internaltx

Exploit Impact
Jun-16-2022 08:47:50 AM +UTC - https://phalcon.blocksec.com/tx/eth/0x958236266991bc3fe3b77feaacea120f172c0708ad01c7a715b255f218f9313c

Money Laundering
Jun-16-2022 08:47:58 AM +UTC - https://etherscan.io/tx/0x37e015682d3d989a90f7e47ee0c12a3bc58a96a671b6eeb9691e03e79ac179d4

https://etherscan.io/tx/0x37e015682d3d989a90f7e47ee0c12a3bc58a96a671b6eeb9691e03e79ac179d4

Money Laundering
Jun-16-2022 08:56:47 AM +UTC - https://etherscan.io/tx/0xf9953c26d229c42938f681ce348322c92a5178965a6631a0f09fcadbac16a9d7
Jun-16-2022 08:56:47 AM +UTC - https://etherscan.io/tx/0xec27c61ae0c5a3f3f8a48bbb7b1f38781205ee1b8a978ee83e0b512c1bb6e22b

https://etherscan.io/tx/0xf9953c26d229c42938f681ce348322c92a5178965a6631a0f09fcadbac16a9d7

Pre-deployment

● Template contracts

● Audit

Post-deployment

● Bug bounties

● Real-time monitoring
and alerting

● Incident/emergency
response

Comprehensive security strategy

Decentralized security camera and
alarm system for Web 3

Detection Bots
“Security cameras”

A script (piece of logic) that any developer
can write and publish to the Forta Network.

Detection bots tell the network what to
watch.

Scan Node
“Alarm system”

Runs the detection bots against each block of
transactions.

The nodes power the detection bots, and keep
them running 24/7.

Forta Explorer (link)

https://app.forta.network/

● TC funding
● Exchange

funding
● New account
● Bridge funding

● Sleep minting
● Attack contract

creation
● Ice Phishing

Token Approvals
● Token

impersonation

● Flashloan price
manipulation

● Flashbot usage
● Ice Phishing

Token Transfers
● Rug pulls
● Exploit

(reentrancy,
failed access
control, etc.)

● TC deposits
● Exchange

deposits
● Exchange into

native tokens
● Bridge deposits
● Wash trading

Combine Alerts

Tornado Cash Funding

Inverse Finance
($1.2M)

Suspicious Contract
Creation
Exploit Simulation

Flashloan
Flashbot Tx

Tornado Cash Money
Laundering

EOA: 0x7b792e49f640676b3706d666075e903b3a4deec6

EOA: 0x7b792e4…b3a4deec6

Attack Exploration (link)

https://kovart.github.io/forta-dashboard/#/combiner

Flash Loan
BotID: 0x55636f5577694c83b84b0687eb77863850c50bd9f6072686c8463a0cbc5566e0
Attack Stage: Exploitation

What is It?

Flash loans are temporary loans (has to be paid back in
one transaction) that allows borrowers to obtain large
amount of tokens. This is used, for example, for arbitrage.

Flash loans are also utilized by attackers to manipulate
prices temporarily. This could be used to exploit a
vulnerable protocol (e.g. by taking out an
undercollateralized loan)

How to detect?

Identify all transactions obtaining a flash loan

Assess whether profit exceeds a particular threshold.

Rug Pulls
BotID: 0x580d14bed37f523d14edcfa83ae87e168ac333a98f70c4f9991357e1b7ee855f
Attack Stage: Exploitation

What is It?

Rug pulls are tokens that are hyped by creators. As they
are traded on DEXes, creators may dump existing tokens
or dump newly created tokens. The price crashes and
remaining token holders are left holding the bag of
worthless tokens.

How to detect?

Obtain price information from DEXes (utilizing common ABI)

Trigger on significant price drops.

Price fluctuations are common, however. In order to reduce
noise, one needs to apply a time series anomaly detection
approach that takes into account historical information
(seasonality, volatility).

Exploit Simulation
BotID: 0xe8527df509859e531e58ba4154e9157eb6d9b2da202516a66ab120deabd3f9f6
Attack Stage: Preparation

What is It?

For certain attacks (e.g. economic attacks, reentrancy
attacks), attackers need to deploy a smart contract. Several
indicators can help to determine whether a smart contract
is malicious (e.g. was it created through Tornado Cash
funded EOA; is it verified on Etherscan?)

These contracts contain all the code that is needed to
execute the exploit.

How to detect?

Upon smart contract deployment, locally fork the chain using
Ganache. Invoke all exposed functions (essentially fuzzing the
smart contract).

Assess whether large amounts of tokens
are transferred into the attacker’s wallet
or contract.

Identifies the attack before it is executed
on-chain.

Custom Bot Development

Define the Requirements
Step 1

Based on threat model define the
requirements:

- What is the logic?
- What alerts will the bot

emit?
- What data do you need?
- What chains should the bot

run on? What differences
exist between the chains?

Implement and Test
Step 2

Implement using Python/
JavaScript/ TypeScript SDK

Test using unit tests

Test retroactively on existing attack
transactions/ blocks

Execute locally against live
transaction feed

Get started at:
https://docs.forta.network/en/latest/quickstart/

Deploy and Subscribe
Step 3

Deploy in a permissionless way to
the Forta Network using the CLI or
Forta App. It will be deployed onto
several nodes to create redundancy
and increase alert reliability.

Log and alert data for the bot can
be viewed and monitored through
bot stats page.

Alert subscriptions can be
configured to receive alerts on
Telegram, Slack, Discord and
accessed through the GraphQL
API.

https://docs.forta.network/en/latest/quickstart/

Custom Bot Development

Setup Dev Environment
Step 1

● Node.js v12+ (which
includes the Node package
manager i.e. npm)

● Conda & Python v3.6+
(only if you want to use
Python SDK)

● Docker v20+

Custom Bot Development

Initialize Bot
Step 2

$ mkdir my-new-bot
$ cd my-new-bot
$ npx forta-agent@latest init
--python

Main Bot Logic

Custom Bot Development

Initialize Bot
Step 2

$ mkdir my-new-bot
$ cd my-new-bot
$ npx forta-agent@latest init
--python

Unit tests

Custom Bot Development

Initialize Bot
Step 2

$ mkdir my-new-bot
$ cd my-new-bot
$ npx forta-agent@latest init
--python

Docker build file

Custom Bot Development

Initialize Bot
Step 2

$ mkdir my-new-bot
$ cd my-new-bot
$ npx forta-agent@latest init
--python

Documentation

Custom Bot Development

Create Documentation
Step 3

Capture
- Title
- Description
- Supported Chains
- Alerts
- Test Data

Custom Bot Development

Implement Bot Logic
Step 4

- Process Tx
- Filter for USDT events
- Normalize value
- Assess against threshold
- Emit alert

Main Function

Custom Bot Development

Implement Bot Logic
Step 4

- Process Tx
- Filter for USDT events
- Normalize value
- Assess against threshold
- Emit alert

Returns a list of
findings

Custom Bot Development

Implement Bot Logic
Step 4

- Process Tx
- Filter for USDT events
- Normalize value
- Assess against threshold
- Emit alert

Findings contain all
pertinent information

Custom Bot Development

Implement Bot Logic
Step 4

- Process Tx
- Filter for USDT events
- Normalize value
- Assess against threshold
- Emit alert

Event Filter

Custom Bot Development

Implement Bot Logic
Step 4

- Process Tx
- Filter for USDT events
- Normalize value
- Assess against threshold
- Emit alert

Assess for
condition

Custom Bot Development

Implement Bot Logic
Step 4

- Process Tx
- Filter for USDT events
- Normalize value
- Assess against threshold
- Emit alert

Emit finding

Custom Bot Development

Test, test, test
Step 5

- Unit test
- Backtest
- Live test

Custom Bot Development

Test, test, test
Step 5

- Unit test
- Backtest
- Live test

Custom Bot Development

Test, test, test
Step 5

- Unit test
- Backtest
- Live test

Custom Bot Development

Deploy
Step 6

- Deploy using CLI
- npm run publish

- Need some MATIC

Custom Bot Development

Deploy
Step 6

- Deploy using CLI
- npm run publish

- Need some MATIC

Custom Bot Development

Subscribe
Step 7

- Various mechanisms:
- Telegram
- Email
- Slack
- Discord
- Webhook

Custom Bot Development

Subscribe
Step 7

- Various mechanisms:
- Telegram
- Email
- Slack
- Discord
- Webhook

Bot Development Exercises

Exercise 1
Detect large USDC transfers

- Simple operational bot
alerting on large (10K+)
USDC transfers

- Filter for Events
(ERC20_TRANSFER/
USDC Token Contract)

- Normalize value
- Threshold on the value

Exercise 2
Detect low balances

- Bot to identify low balances.
Allows to monitor your own
address

- Assess balance with each
block/tx

- Alert when it falls below a
threshold

- Cache so you don’t receive
alert barrage

Exercise 3
Flashloan resulting in losses in

Yearn Dai Vault

- Assess whether flashloan
protocol and Vault were
touched in tx

- Assess whether flashloan
was obtained

- Assess vault balance
before and this block to
derive difference

- Threshold on diff and alert

Get started at:
https://github.com/forta-network/forta-bot-workshop

https://github.com/forta-network/forta-bot-workshop

Bot Development Contest

Context 9
Identify attacked protocol

- Win up to 3,000 USD
- Alerts today identify attacks and expose slew of

addresses involved in the transaction. Post analysis
needs to be performed to identify what protocol was
attacked

- Bot’s goal is to identify the protocol attacked (e.g. by
analyzing token transfers)

https://docs.forta.network/en/latest/contest9-forta/

https://docs.forta.network/en/latest/contest9-forta/

Part 2.
Let’s look at the protocol code

Generic alerting Dedicated alerting

Allow detection of
generic attacks?

Yep Kinda

Gives confidence in
YOUR protocol safety

50 / 50 > 90%

Main attack vectors
detected

Both generic and specific
attacks

Generic changes and
uncertainties in the protocol,
but not attacks itself

Set-up You can use existing bots You need to build a bot
yourself

Why we need protocol alerting?

We need them ALL

Typical protocol alerts

Predictions of possible issues in operations

◆ Sloppy oracles
◆ Low balance of executors
◆ Unexpected funds movements
◆ Unexpected vote content
◆ …

Operations

Repetitive events

◆ Oracle reports
◆ Rewards distribution
◆ Funds deposits
◆ DAO Voting
◆ …

Typical protocol alerts
Security

Inconsistency in protocol invariants

◆ Bridge balance difference (bridge hack)
◆ Issuing of the tokens with no actual backup (protocol hack)
◆ Minting NFTs with no actual backup (protocol hack)
◆ Unexpected fund transfers (protocol ownership loss)
◆ …

Typical protocol alerts

Events that should never happen

◆ Roles or ownership transfers to the EOA or null
address

◆ Self-distruct of the protocol contract
◆ Changes in immutable slots values
◆ …

Security

Events that should not happen silently

◆ Huge withdrawals
◆ Huge balance changes
◆ …

ACL changes

◆ Role granted/revoked
◆ Ownership transferred
◆ …

Let’s go deeper!
Practical examples

You should start thinking about alerts and analyzing code before the
deployment

When we start?

ADR Develop Review Deploy

Review contracts
architecture for
early issues
detection

Add stuff necessary
for proper alerting.
Events, view
methods, etc.

Check that we have
all we need for
monitoring and
alerting

Develop and deploy
detection bots.
Set-up alerting
channels

Defining critical events

ACL changes Ownership transfers State changes

Each ACL change should be
alerted

Granting or revoking critical
permissions should be supplied
with the critical alerts

To EOA

To unknown contract

To Null address

Ordinary state changes

Huge changes in ordinary
state

Critical state changes

Most common ACL contracts
@openzeppelin/contracts/access/AccessControl.sol
@openzeppelin/contracts/access/Ownable.sol

Defining protocol invariants

Amount minted = Amount deposited

Source bridge balance >= Target bridge balance

Collateral value > Loan value

…

Repetitive Event Possible issues How to predict

Oracle report Quorum not reached Monitor quorum participation
and difference in the reports

Rewards distribution Rewards are not distributed in
time

Off chain executor monitoring

Stake deposits Huge amount of funds in buffer Off chain executor monitoring

Validator keys upload New keys are not uploaded Monitor current available keys
number

Defining repetitive events
and ways to predict issues with it

A good way to protect your contracts from being hacked is to
investigate known hacks and make sure none of them is
applicable for your code.

Code review
based on knows hacks and vulnerabilities

All alerts should be acted

Otherwise, they shouldn’t exist at all

Set-up on-call system for critical alerts if possible

Stay up-to date with the alerts

Stay up-to date with the alerts

Critical and High

All feed

Use separate chats for the info feed and critical alerts

RunBook is a comprehensive description of the alert itself and
actions to be taken on it.

➔ Resolution
➔ Escalation
➔ Notes and links

➔ Description
➔ Severity
➔ Confirmation

On-call person or person on-duty should know what
actions should be done when the alert fires

Actions on alerts
RunBooks

Check out Lido RunBook

cutt.ly/4BtVNBq

https://cutt.ly/4BtVNBq

@openzeppelin/contracts/security/Pausable.sol

function deposit() external payable whenNotPaused

Actions on alerts
Emergency brakes

Your contracts should have “emergency brakes”
Detecting hacks without ability to stop it is useless

Confidence

Alerting for the most critical stuff should be
duplicated

One more thing

It is time to create your own alerts!

Exercise 1
Operational monitoring and alerts

◆ Define main operational aspects of the
protocol

◆ Define repetitive events
◆ Describe events ABI, alert texts and

severity
◆ Think about protocol specific

operations that you need to be alerted
about

Exercise 2
Security monitoring and alerts

◆ Define critical events and state
changes in the protocol

◆ Define ACL model
◆ Determine protocol invariants
◆ Implement alerts for all points above

Get started at:
https://github.com/forta-network/forta-bot-workshop

Protocol Alerts Exercises

https://github.com/forta-network/forta-bot-workshop

Alerting checklist Existing Lido-Forta bots

cutt.ly/TBo7IWy github.com/lidofinance/alerting-forta

Join Workshop Telegram Group:

https://t.me/+r-DE0dNqvSFjNmNh

https://t.me/+r-DE0dNqvSFjNmNh

