
Formal Methods
for the Working DeFi Dev

Rikard Hjort
Senior Verification Engineer,

Runtime Verification, Inc.

Full lecture notes: bit.ly/3RFwvBx

https://bit.ly/3RFwvBx

Motivation

Get the most out of your audits
How can you best prepare for an audit?
The obvious things:
● Unit tests
● Integration tests
● Documentation
● Availability

I assume these are common knowledge

But can you do more?
What’s the secret sauce of a good audit?

Invariants

Find more bugs,
write better docs,
trust your code more,
help auditors.
We want you to come up with invariants of your on-chain
code.

Invariants will not only help us do a better audit
(because finding good invariants is what we use
ourselves to find most serious issues).

They will help you find more bugs on your own.
They are good fuzz targets.
They help you view your code from a new angle.
They help you structure your code for security.

Structure
● state is just equations – how to come up with invariants describing your

contract’s secure state,
● proving is just ticking boxes – using simple induction to “prove” your invariants

are correct – or find bugs,
● failed proofs are clues – using your invariants and proof attempts to refactor,
● invariants are test targets – how to fuzz your invariants with Foundry and,
● invariants are monitor triggers – you can use them to monitor your deployed

code for inconsistencies.

If you have code you are working on right now, or have deployed, bring it up! If
not, we will be working through an example, but that will be less active on your
part.

It’s a lot to cover. I will let this session spill out – we can always grab a table
outside and keep going for another hour.

Testing vs. invariants

Testing

Testing is our first and most robust line of defense. Like
a good camping knife it can get most jobs done, in the
hands of a skilled technician

There is a myriad of resources to help test better, how to
set up, what to write, when to write tests. And there are
tools, tools, tools.

I assume you are all already somewhat well-versed in
testing.

Testing is an experiment
What good is an experiment
without a theroy?

● Testing is great, but do you trust it to be enough?
● Fuzz-testing is all the rage. But what should you

fuzz-test?

Testing is like experiments: by doing one you might learn
how the system behaves in a specific instance, and with
many you develop some intuition. But can we make your
intution into something rigorous, something you can
communicate and rely on into the future?

Reasoning about code

● Few resources
● “You just learn from experience”
● We are always doing it:

○ Debugging
○ code review
○ Design discussions

Reasoning is like developing a theory, the thing that
experiments (tests) then can help us verify.

Analogy to mathematics
In math you are taught

1. computing answers – specific results, applications
of a certain rule, and how to check your answers

2. proofs – being able to prove a theorem, and being
able to use it in other proofs, is the gold standard
of whether you understand it.

Reasoning about code is analogous to proofs*. And just
like proving (or at least hand-waving a bit to make a
structured argument) there is a method to the madness,
and a pinch of artistry.

*some of you may know that the correspondence between proofs
and code run vary deep, but here we will take a more intuitive and
less rigorous approach.

State as Equations
Invariants

Section 3

What are the (incidental) rules the system
must follow, if it works correctly?

What’s the code behind the code

invariant

● (adjective) Not varying;
constant.

● (adjective) Mathematics
Unaffected by a designated
operation, as a transformation
of coordinates.

● (noun) An invariant quantity,
function, configuration, or
system.

Your code is excruciatingly exact, and very step by step.
It’s imperative, not declarative.

Here’s your chance to be declarative!

Example:

sum(balances) = totalBalance

A great invariant is obvious from the intended business
logic, but not obvious from the code.

Our working example
Github: alchemix-finance/v2-foundry
src/AlchemistV2.sol
Each account has a shares balance per yield token.
We also keep track of the totalShares for each yield
token, because we need that to calculate how much
each share is worth.
So we want to make sure that these are in sync: the sum
of all the balances of shares in user accounts is equal
to the totalShares.
This invariant is crucial, because your percentage of
incoming rewards are based on your percentage of the
total shares.

(This is invariant A2 in
https://github.com/runtimeverification/publications/blob/m
ain/reports/smart-contracts/Alchemix_v2.pdf)

https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Alchemix_v2.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Alchemix_v2.pdf

How to come up with good
invariants?

1. Come up with many.
2. Go over your storage variables: do you have ones

which have some obvious relationship?
3. Use ghost variables: variables that you could

track, if you wanted, but don’t. Example:
totalEthEverReceived

4. Deoptimize: make a ridiculously simple version of
some optimized logic. Example: distribute yields
by looping over all users and updating their
accounts.

5. Design spec: read your design spec again.
6. From unit tests: replace some unit tests values

with symbolic values. How do the checks need to
change?

Ghost variables

Feel free to introduce mathematical variables that don’t
correspond to any of your state variables!
This can be either impossible to compute functions, like
sum(balances) where balances is a mapping, or
totalDepositedEver which tracks all the sums that have
ever been deposited into your protocol (as opposed to a
totalDeposited state variable which may track how much
is currently deposited).
You may even decide that some ghost variables deserve
to become actual state variables.
Or at least, that you will emit events to be able to
perform summations in your monitoring tools/indexer.

Deoptimize

Another kind of invariant:
“The implementations are semantically equivalent, in terms of how many tokens get sent out”

Proving invariants:
Boring and straightforward (usually)

How to prove an invariant

Note where the (ghost) variables
are written to

Where are the variables
modified? List all functions
that modify them.

Check the “base
case”

Check that the invariant
will hold from the start:
check the constructor
and/or initializer.

Check the
“inductive case”

Prove the invariant for all the
functions/paths:

● Assume the invariant holds before
the tx.

● Look at the locations that modify
the variables. Perform one
"symbolic update" by going
through the path.

● Check that the invariant still holds

Show your work!

Our working example
Github: alchemix-finance/v2-foundry
src/AlchemistV2.sol

We look over the contract. I like to use command-line
tools.
$ ag “balances|totalShares|assembly”
You need to make sure you find all relevant locations,
even if they are in contracts that yours inherits, or ones
that inherit from your contract.
A dependency graph tool like Surya can help.
We find:

● addYieldToken
● _issueSharesForAmount
● _burnShares

Nothing in initializer or constructor, so start at
0. The function addYieldToken sets

totalShares to 0, balances untouched.
We get 0 = 0.

Done!

FInd bugs, or convince everyone your invariant holds
And while this case may seem trivial, remember that

1. as things get hairier the bugs get scarier, and
2. this class of bug are definitely out there, and we

do find them in frozen code.

Save somewhere useful: in
code comments, docs, design
docs …

Failed proofs are clues,
they guide refactoring and refinement

Tools of the trade
● If the function logic too complex? You may need to give each basic block a

name, and work it separately. Or refactor so that the same variables are
modified in the same place.

● Complex arithmetic expressions, with rounding? Ignore for now, treat it as real
numbers, do rounding error analysis separately.

● Working on many invariants? Annotate functions with framing conditions,
comments which say which variables get modified in the function, both
directly and indirectly.

● Did you check everything? Don’t forget imports, inheritance, inline
assembly…

● Code keeps changing? You may have to redo many proofs. Invariant proving
is best done over frozen code.

"My head hurts and I'm not sure of my proofs!"
Look at the invariant giving you trouble. What variables does it contain?

● Pick one function of which you are not sure, look at relevant variables.
● Try to group the variable updates so that the invariant holds after each basic

block. You may have to create several different paths.
● Helper functions help

Remember, if you show the following, you are good:
● The invariant holds at construct time/initialization
● If the invariant holds at the beginning of the function basic block, it holds at

the end of the function basic block.

security > simplicity > functionality > optimization

Even if functionality and optimizations are important
to you, you can start by simplifying your code,
secure it by proving invariants, and gradually
optimizing it while keeping your proofs up to date.

Invariants are test targets

Property based testing
You could:
● (Easy, less powerful) Create a set of tests that try a bunch of different

operations, and check in the end that all your invariants hold, or,
● (Hard, more powerful) You could instrument your existing tests with some

clever wrapping.

Dead simple idea

Create a contract that just wraps the external
functionality of the contract you are testing.
Your wrapper updates ghost variables and checks
invariants upon entering or exiting the function.
Use the wrapper instead of your regular contract in
testing.

Invariants are monitor targets

Two approaches

● On-chain monitoring with requires and assert
○ Pro: can halt contract before bad things

happen.
○ Con: may cause liveness bugs, requires

very careful planning.
○ Con: gas cost.

● Off-chain monitoring, running your own node.
○ Pro: can be deployed at any time.
○ Pro: can’t cause liveness bugs
○ Con: what do you do if you detect failure?
○ Con: may not prevent hacks that happen in

a single block.
A “poor-man’s monitor” is just your Foundry fuzzing,
running constantly against chain state.

What’s next?

Fuzzing ♥ Symbolic Execution

Fuzzing with Foundry Symbolic Execution with KEVM

Write test using Solidity Reuse Foundry tests

Expressiveness limited to Solidity Enhanced expressiveness with K-language

Extremely fast Slow

No human intervention required Sometimes requires human intervention

Randomized inputs Symbolic Inputs = 100% input coverage

No false positives No false positives

False negatives No false negatives

Easy to use Easy to try, hard to master

Foundry ♥ KEVM2

Questions?

39

https://runtimeverification.com/

@rikardhjort @rv_inc

https://discord.com/invite/CurfmXNtbN

{rikard.hjort, contact}@runtimeverification.com

Raoul Schaffranek: Tackling Rounding Errors

with Precision Analysis

Oct 11th — 15:00 AM - 15:30 PM @ Flower

Past talk, video soon

https://runtimeverification.com/

Appendix: Questions from the session
● Q: What about silly edge cases, like “this counter may overflow after 2^256 operations?”

○ A: Add the assumption that there will never be 2^256 operations ever performed to your assumptions and
move on. If you need convincing: the counter would also, incidentally, find every private key on Bitcoin,
Ethereum, and all other networks. And if you processed one tx per Planck time it would take you 2 * 10^26
years to cause an overflow.

● Q: Is this anything like Behavior-Driven Development, or Given-When-Then practices?
○ I have no idea! That sounds cool, tell me more about it.

● Shouldn’t you do this even if your code changes? If you start making and proving invariants right away, won’t your
code be better, even if it takes a bit longer.

○ Yes, amazing idea, please do that. I just know from experience it’s hard enough to get developers to start
doing this at all, and it’s more demoralizing if your code keeps changing under you. But if you have the
discipline and good tooling go for it. Also show me your work, I would love to see what invariants you come up
with.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.7.3/contracts/utils/Counters.sol
https://simple.wikipedia.org/wiki/Planck_time
https://www.wolframalpha.com/input?i=2%5E256+*+planck+time+%2F+%28%2860+s%2Fmin%29+*+%2860+min%2Fh%29+*+%2824+h%2Fday%29+*+%28365+day%2Fyear%29%29
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Given-When-Then

