
EVM - Some Assembly Required

Alex Bazhenov
Lead Developer, Tally Ho

1. What is EVM Assembly?
2. How to read opcodes to trace a simple transaction.

Why do we care?

What is EVM Assembly?

Section 1

What is the EVM?

What is the EVM?

- EVM, zkEVM, Evmos

What is the EVM?

- EVM, zkEVM, Evmos
- At its core - the EVM is a stack machine.

What is the EVM?

- EVM, zkEVM, Evmos
- At its core - the EVM is a stack machine.
- Most operations consume values from the stack. (ADD, MUL, SUB)

What is the EVM?

- EVM, zkEVM, Evmos
- At its core - the EVM is a stack machine.
- Most operations consume values from the stack. (ADD, MUL, SUB)
- There are exceptions to this. (PUSH1, PUSH2, ….., PUSH32)

The Stack Machine

- Depth of 1024 Items

The Stack Machine

- Depth of 1024 Items
- Each item is a 256-bit word

The Stack Machine

- Depth of 1024 Items
- Each item is a 256-bit word
- During execution, the EVM maintains a transient memory (as a word-addressed byte array), which

does not persist between transactions.

The Stack Machine

- Depth of 1024 Items
- Each item is a 256-bit word
- During execution, the EVM maintains a transient memory (as a word-addressed byte array), which

does not persist between transactions.
- Contracts contain a Merkle Patricia storage trie (as a word-addressable word array), which

associated with the account in question and is part of the global state.

The Stack Machine

- Depth of 1024 Items
- Each item is a 256-bit word
- During execution, the EVM maintains a transient memory (as a word-addressed byte array), which

does not persist between transactions.
- Contracts contain a Merkle Patricia storage trie (as a word-addressable word array), which

associated with the account in question and is part of the global state.
- Compiled smart contract bytecode executes as a number of EVM opcodes, which perform

standard stack operations like XOR, AND, ADD, SUB, etc.

The Stack Machine

- Depth of 1024 Items
- Each item is a 256-bit word
- During execution, the EVM maintains a transient memory (as a word-addressed byte array), which

does not persist between transactions.
- Contracts contain a Merkle Patricia storage trie (as a word-addressable word array), which

associated with the account in question and is part of the global state.
- Compiled smart contract bytecode executes as a number of EVM opcodes, which perform

standard stack operations like XOR, AND, ADD, SUB, etc.
- The EVM also implements a number of blockchain-specific stack operations (More on these later).

The Stack Machine

- Depth of 1024 Items
- Each item is a 256-bit word
- During execution, the EVM maintains a transient memory (as a word-addressed byte array), which

does not persist between transactions.
- Contracts contain a Merkle Patricia storage trie (as a word-addressable word array), which

associated with the account in question and is part of the global state.
- Compiled smart contract bytecode executes as a number of EVM opcodes, which perform

standard stack operations like XOR, AND, ADD, SUB, etc.
- The EVM also implements a number of blockchain-specific stack operations (More on these later).
- Each operation costs a certain number of gas.

Assembly

Assembly

Solidity

function setOne() public {
 myVar = 1;
}

Assembly

Solidity

function setOne() public {
 myVar = 1;
}

Bytecode

0x5b01010100819055

Assembly

Solidity

function setOne() public {
 myVar = 1;
}

Assembly

JUMPDEST
PUSH1 0x1
PUSH1 0x0
DUP2
SWAP1
SSTORE

Bytecode

0x5b01010100819055

Tracing a Transaction

Section 2

www.evm.codes

PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH1
0x14 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP PUSH1 0x75
DUP1 PUSH2 0x23 PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN INVALID
PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH1 0xF
JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP PUSH1 0x4
CALLDATASIZE LT PUSH1 0x28 JUMPI PUSH1 0x0 CALLDATALOAD
PUSH1 0xE0 SHR DUP1 PUSH4 0x6057D3EE EQ PUSH1 0x2D JUMPI
JUMPDEST PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH1 0x33 PUSH1
0x35 JUMP JUMPDEST STOP JUMPDEST PUSH1 0x8 PUSH1 0x0 DUP2
SWAP1 SSTORE POP JUMP INVALID LOG2 PUSH5 0x6970667358 0x22
SLT KECCAK256 PUSH1 0xA5 RETURN 0xBD LOG4 0xC1 0xB6 PUSH8
0xD47AC4FEDCFA3F11 PUSH10 0x7B65BE5AD57BD09B3C35 0xEB LOG2
SWAP2 0x5D 0xE3 PUSH5 0x736F6C6343 STOP ADDMOD GT STOP
CALLER

Let’s trace the
opcodes of a real
transaction.

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x80: Push `128` onto the stack

128

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x80: Push `128` onto the stack
PUSH1 0x40: Push `64` onto the stack

128

64

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x80: Push `128` onto the stack
PUSH1 0x40: Push `64` onto the stack
MSTORE: Store `128` at an offset of `64` in memory

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x80: Push `128` onto the stack
PUSH1 0x40: Push `64` onto the stack
MSTORE: Store `128` at an offset of `64` in memory

Solidity uses the memory area between address zero
and address `0x7F` for internal purposes, and stores
data starting at address `0x80`

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x4: Push `4` onto the stack.

4

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x4: Push `4` onto the stack.
CALLDATASIZE: Push size of input data onto stack.

4

4

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x4: Push `4` onto the stack.
CALLDATASIZE: Push size of input data onto stack.
LT: Check if input data is less than 4.

false

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x4: Push `4` onto the stack.
CALLDATASIZE: Push size of input data onto stack.
LT: Check if input data is less than 4.
PUSH1 0x28: Push `38` onto the stack.

false

38

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x4: Push `4` onto the stack.
CALLDATASIZE: Push size of input data onto stack.
LT: Check if input data is less than 4.
PUSH1 0x28: Push `38` onto the stack.
JUMPI: Jump to `38` (revert) if call data size is less than 4.

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

PUSH1 0x4: Push `4` onto the stack.
CALLDATASIZE: Push size of input data onto stack.
LT: Check if input data is less than 4.
PUSH1 0x28: Push `38` onto the stack.
JUMPI: Jump to `38` (revert) if call data size is less than 4.

Since function signatures are 4 bytes in length - if the
CALLDATASIZE is less than 4 bytes it is impossible to
determine which function is intended to be called.

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

CALLDATALOAD: Push the calldata onto the stack,

0x6057D3EE

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

CALLDATALOAD: Push the calldata onto the stack,
PUSH4 0x6057D3EE: push 0x6057D3EE onto the stack.

0x6057D3EE

0x6057D3EE

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

CALLDATALOAD: Push the calldata onto the stack,
PUSH4 0x6057D3EE: push 0x6057D3EE onto the stack.
EQ: Check if the calldata is equal to 0x6057D3EE

true

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

CALLDATALOAD: Push the calldata onto the stack,
PUSH4 0x6057D3EE: push 0x6057D3EE onto the stack.
EQ: Check if the calldata is equal to 0x6057D3EE
PUSH1 0x2D: Push `45` onto the stack.

true

45

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

CALLDATALOAD: Push the calldata onto the stack,
PUSH4 0x6057D3EE: push 0x6057D3EE onto the stack.
EQ: Check if the calldata is equal to 0x6057D3EE
PUSH1 0x2D: Push `45` onto the stack.
JUMPI: Jump to `45` (setTotalSupply) if calldata is equal to
0x6057D3EE

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

CALLDATALOAD: Push the calldata onto the stack,
PUSH4 0x6057D3EE: push 0x6057D3EE onto the stack.
EQ: Check if the calldata is equal to 0x6057D3EE
PUSH1 0x2D: Push `45` onto the stack.
JUMPI: Jump to `45` (setTotalSupply) if calldata is equal to
0x6057D3EE

This is how the EVM determines which function to call.

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.

8

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.
PUSH1 0x0: push 0 onto the stack.

8

0

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.
PUSH1 0x0: push 0 onto the stack.
DUP2: Duplicate the 2nd-from-the-top word of stack.

8

0

8

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.
PUSH1 0x0: push 0 onto the stack.
DUP2: Duplicate the 2nd-from-the-top word of stack.
SWAP1: Swap 1st and 2nd words on the stack.

8

8

0

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.
PUSH1 0x0: push 0 onto the stack.
DUP2: Duplicate the 2nd-from-the-top word of stack.
SWAP1: Swap 1st and 2nd words on the stack.
SSTORE: Save `8` to storage.

8

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.
PUSH1 0x0: push 0 onto the stack.
DUP2: Duplicate the 2nd-from-the-top word of stack.
SWAP1: Swap 1st and 2nd words on the stack.
SSTORE: Save `8` to storage.
POP: Remove the word on top of the stack.

Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

JUMPDEST: Marks a valid jump destination.
PUSH1 0x8: push 8 onto the stack.
PUSH1 0x0: push 0 onto the stack.
DUP2: Duplicate the 2nd-from-the-top word of stack.
SWAP1: Swap 1st and 2nd words on the stack.
SSTORE: Save `8` to storage.
POP: Remove the word on top of the stack.

Why are we duplicating and swapping here?
Stack

1: PUSH1 0x80
2: PUSH1 0x40
3: MSTORE

25: PUSH1 0x04
26: CALLDATASIZE
27: LT
28: PUSH1 0x28
29: JUMPI

32: CALLDATALOAD
33: PUSH4 0x6057D3EE
34: EQ
35: PUSH1 0x2D
36: JUMPI

45: JUMPDEST
46: PUSH1 0x08
47: PUSH1 0x00
48: DUP2
49: SWAP1
50: SSTORE
51: POP

Gas Optimization Using Yul

Section 3

JUMPDEST
PUSH1 0x8
PUSH1 0x0
DUP2
SWAP1
SSTORE
POP

setTotalSupply

JUMPDEST
PUSH1 0x8
PUSH1 0x0
SSTORE

optimizedSetTotalSupply

Optimizing contracts
is hard - chances are
you are not going to
do a better job than
the compiler unless
you really know what
you’re doing.

Contracts containing assembly are generally harder to
reason about and harder to audit than contracts written in
Solidity or Vyper.

If you’re writing your own assembly code - always
measure and make sure that your implementation is
better than the compilers.

Remember that a lot of the memory management stuff
Solidity does under the hood is there for safety reasons -
and just because an opcode looks like its unnecessary
does not mean that it actually is.

Thank you!

Alex Bazhenov
Lead Developer, Tally Ho

alex@tally.cash

 @0xDaedalus

Appendix
Gilbert Garza (@soundly_typed)
https://leftasexercise.com/2021/09/05/a-deep-dive-into-solidity-contract-creation-and-t
he-init-code/
https://ethereum.org/en/developers/docs/evm/
https://jeancvllr.medium.com/solidity-tutorial-all-about-assembly-5acdfefde05c
https://github.com/crytic/evm-opcodes
https://hackmd.io/@gn56kcRBQc6mOi7LCgbv1g/rJez8O8st

