Introduction to Cryptoeconomics

Julian Ma

Robust Incentives Group, Ethereum Foundation

Section 1

What is Cryptoeconomics?

Economic incentives induce participants to do what the protocol wants them to do

Economic incentives induce participants to do what the protocol wants them to do

Game Theory

Study of strategic behaviour

"What should I do, given what other players will do"

Strategy of Miners

We usually represent games in tables. What should the players do?

	Everyone else mines on Longest Chain	Everyone else mines on Other Chain
I mine on Longest Chain	6 , 6	😠, 🥳
I mine on Other Chain	😠, 🥳	5 , 5

Nash Equilibrium

No player has a **strict incentive to deviate**. We reach an *equilibrium state*

	Everyone else mines on Longest Chain	Everyone else mines on Other Chain
I mine on Longest Chain	(;	😠, 🥳
I mine on Other Chain	😠 , 🥳	(; , ;

Mechanism Design

Study of the **design of strategic** situations ("reverse game theory") Left unchecked, many strategic situations have bad equilibria, or none.

How can we **design** the game (rewards, penalties, action spaces...) so that good outcomes are reached?

How do we design auctions efficiently?

What does "efficient" mean?

Mechanism Design

We have multiple **Nash Equilibriums**

Incentivize such that the one we want becomes reality.

	Everyone else mines on Longest Chain	Everyone else mines on Other Chain
I mine on Longest Chain		😠, 🥳
I mine on Other Chain	1 😠, 🥳	()

Section 2

Gas Market

Market Overview (Pre EIP-1559)

Each operation costs gas units

Costs defined **relative** to other operations

Supply and demand determine **ETH per gas unit** users pay

Gas limit per block to preserve decentralization

Validators maximize pay-off by **including most valuable transactions** in a block

Blockspace Auction

This is a **first-price auction**: you pay what you bid if your bid wins

But... economists (and game theorists) don't like first price auctions!

What other options do we have?

Google	First price auction		
	Q All 🖾 Images 🕑 Videos 🖽 News 🐼 Maps ∶ More Settings Tool	S	
imgflip.com	About 815,000 results (0.39 seconds) Did you mean: An auction mechanism where users do not have to be strategic but can just bid their true valuation		

Blockspace Auction

This is a **first-price auction**: you pay what you bid if your bid wins

But... economists (and game theorists) don't like first price auctions!

What other options do we have?

Second price auction: if you win the auction (post the highest bid), you pay the second-highest bid.

Dominant strategy incentive compatibility: Your best strategy is to **bid your true value**

Others players should too, so... Nash equilibrium!

Example: winner bids 14 ETH but pays 10 ETH

Why don't we have a second-price auction for blockspace instead?

Why we cannot have second-price auction

Miners choose transactions to maximize pay-off

Miners can also stuff blocks with **transactions to themselves**! "Real" Block, Profit = 8

Fee	10	8	7	2
Revenue	2	2	2	2

Stuffed Block, Profit = 18

Fee	10	8	7	6
Revenue	6	6	6	6

Unique to cryptoeconomics: adversarial environment

Priority Gas Auction (PGA)

Consequence of the first-price auction: for valuable blockspace, fast bots continuously outbid each other.

Leads to congestion, wasted blockspace and higher gas fees

Source: Flashboys 2.0

EIP-1559: How the gas market changed

Up until now, talked about Pre EIP-1559

(Post EIP-1559) Fee = base fee + tip

Base fee depends on demand and supply and is set by the protocol

Incentive compatibility : users can bid
their true value

Why does EIP-1559 not decrease fees?

Section 3

Maximum Extractable Value

Maximum Extractable Value

Users send their **transactions** to the **mempool**

Searchers look for arbitrage opportunities

Order of transactions can be manipulated

Some strategies are **risk-free** due to blockchain **atomicity**

Why not just "forbid" MEV?

Build useful projects Extract MEV

MEV is bad

Searchers lead to **worst possible transaction** execution

MEV incentivizes centralization

Searchers waste blockspace

Smart MEV searchers could build other great projects

MEV is good

Searchers provide **valuable service** (backrunning, liquidations)

MEV can be **redistributed**

MEV needs to be extracted to ensure protocol safety

Conclusion MEV slide

Difficult to objectively say MEV is good or bad

Easy to say MEV cannot be ignored

Some responsibility for dApp developers: do not let your user's value be extracted

Responsibility for protocol: not all MEV can be mitigated via applications

Section 4

Ongoing Research

Ongoing research subjects

Robust Incentives Group (RIG) researches incentives in cryptoeconomic games

Maximum Extractable Value (MEV)

Multidimensional gas fees

Proposer Builder Separation (PBS)

Rollup Economics

Blockspace Derivatives

Foundation of cryptoeconomics: trustlessness, decentralization and game theory

Here are some links that may help you with delving deeper into cryptoeconomics

Name	What	Link
Robust Incentives Group (RIG)	Posts, papers & talks on cryptoeconomics	<u>https://ethereum.github.io/ri</u>
Flashbots	Posts focused on MEV and PBS	https://writings.flashbots.net /writings/
Ethresear.ch	Posts on general Ethereum focused research, including cryptoeconomics	https://ethresear.ch/
CryptoEconLab Protocol Labs	Posts, papers & talks on cryptoeconomics	CryptoEconLab Protocol Labs Research.

Personal blogs: Barnabé, Vitalik, Pintail, Tarun

Thank you!

Strong research background? Mechanism design expert? Want to help us make sense of it? Apply to the RIG now!

Barnabé Monnot, Julian Ma

Robust Incentives Group (RIG), Ethereum Foundation barnabe@ethereum.org, julian.ma@ethereum.org

@barnabemonnot

