EELS

The future of Ethereum Execution Layer Specifications

Peter Davies
EELS Team

What do I mean by “Execution Layer®?

e We only care about the “state transition function”.
o Cananew block be added to the end of a chain?
o What happens to the chain state when we add a block?

e FEverything else is out of scope.
o Fork choice

Reorgs

Networking

APIs (e.g. ISON RPC)

Performance

Transaction Gossip

O O O O O

Thus we are able to define the block header validity
function V(H):

Current Sources of 256

Information (66) V(H) = n<—ﬁ;Anu:Hm A
Hq=D(H) A
H,.<H A
P(H
Yellow Paper Hy < P(H)u, + (H)wy |
EIPs | 1024 |
I H, > P(H) _ % A
Testsuite 1 H) 1021 |
Client source code H, > 5000 A

H,>P(H)u, A

il = P(H)Hl +1 VAN
| Hx|| < 32
where (n,m) = PoW(Hn, Hy,d)

Noting additionally that extraData must be at most
32 bytes.

Defines the gas cost of the ModExp (0x00..05) precompile.

Abstract

To accurately reflect the real world operational cost of the ModExp precompile, this EIP specifies an algorithm
for calculating the gas cost. This algorithm approximates the multiplication complexity cost and multiplies that
by an approximation of the iterations required to execute the exponentiation.

Motivation

Modular exponentiation is a foundational arithmetic operation for many cryptographic functions including
signatures, VDFs, SNARKSs, accumulators, and more. Unfortunately, the ModExp precompile is currently over-
priced, making these operations inefficient and expensive. By reducing the cost of this precompile, these
cryptographic functions become more practical, enabling improved security, stronger randomness (VDFs), and
more.

Specification

As of FORK_BLOCK NUMBER , the gas cost of calling the precompile at address
0x0000000000000000000000000000000000000005 will be calculated as follows:

def calculate multiplication complexity(base length, modulus length):
max_length = max(base length, modulus length)
words = math.ceil(max length / 8)
return words**2

def calculate iteration count(exponent length, exponent):
iteration count = 0
if exponent length <= 32 and exponent == 0: iteration count = 0
elif exponent length <= 32: iteration count = exponent.bit length() - 1
elif exponent length > 32: iteration count = (8 * (exponent length - 32)) + ((exp
return max(iteration count, 1)

def calculate gas cost(base length, modulus length, exponent length, exponent):
multiplication complexity = calculate multiplication complexity(base length, modu
iteration_count = calculate_iteration count(exponent length, exponent)
return max(200, math.floor(multiplication complexity * iteration count / 3))

4 »

Rationale

Specifications need to be
part of standards
processes

e Updating standards can't be an
afterthought

e (odethatisnt testedisn't worth
anything

‘Beware of bugs in the above code; |
have only proved it correct, not tried it."
— Donald Knuth

Our approach

e Specifications are written in code
o Python without classes/methods (basically pseudocode)
o Common language of all programmers
o (Can be executed
e Focus solely on readability
o Performance is for real clients
e Keep forks separate rather than lots of conditionals
o Horrendous for code duplication, great for the casual reader
o Specialist diff tools for comparing hardforks

def sload(evm: Evm) -> None:

Loads to the stack, the value corresponding to a certain key from the
storage of the current account.

Parameters

The current EVM frame.

STACK
key = pop(evm.stack).to_be_bytes32()

GAS

if (evm.message.current_target, key) in evm.accessed_storage_keys:
charge_gas(evm, GAS_WARM_ACCESS)

else:
evm.accessed_storage_keys.add((evm.message.current_target, key))
charge_gas(evm, GAS_COLD_SLOAD)

OPERATION
value = get_storage(evm.env.state, evm.message.current_target, key)

push(evm.stack, value)

PROGRAM COUNTER
evm.pc += 1

The two sides of development

e R&D people (e.g. Vitalik Buterin)
o Interested in theoretical concerns
o Don't care about performance complexities
o Want a flexible playground
e Implementers (e.g. Péter Szilagyi)
o Care about precise details
o Want to focus on complicated performance issues (DB structure,
etc...)

EELS provides a common framework for these two sides to talk to each
other.

Development stages in an EELS world

R&D:
1. Develop an idea to improve the execution layer
2. Prototype the idea in EELS

EELS:
3. Integrate with other proposals to make a hardfork in EELS
4. Fill tests, start ephemeral testnets?

Implementers:
5. Implement in production clients
6. Deploy on testnets and mainnet

Current Status

e All hardforks are implemented (The Merge is still a PR)
e Refactoring complete and code freeze in November (hopefully)
e Shanghai governance shadowing

How you can help!

We don't need your help until
we've finished coding
Implement your favourite EIP and
give us feedback

Questions?

ethereum.github.io/execution-specs

github.com/ethereum/execution-specs

Thanks for listening!

ethereum.github.io/execution-specs

github.com/ethereum/execution-specs

