
Demystifying Ethereum Assembly
A practical zero-to-one guide.

jtriley.eth
EVM Smart Contract Engineer

Understanding The Ethereum Virtual Machine

Section 1

Links for this Workshop

https://linktr.ee/evmassembly

Instruction Set
The EVM is a stack-based virtual machine with a relatively small
instruction set. The instructions can be categorized by one of the
following.

❖ Stack Instructions
❖ Arithmetic Instructions
❖ Comparison Instructions
❖ Bitwise Instructions
❖ Memory Instructions
❖ Context Instructions

➢ Read
➢ Write

Stack Instructions
Stack instructions involve manipulating the position of values on the
stack.

- pushN value: pushes a value to the top of the stack where N is the
byte size of the value.

- pop: pops a value from the top of the stack.
- swapN: swaps the value from the top of the stack with a value at

stack index N.
- dupN: duplicates a value from the stack at index N and pushes it to

the stack.

Stack Example

Arithmetic Instructions
Arithmetic instructions pop two or more values from the stack, performs
an arithmetic operation, and pushes the result.

- add pushes the result of addition of two values.
- sub pushes the result of subtraction of two values.
- mul / smul pushes the result of multiplication of two values.
- div / sdiv pushes the result of the division of two values.
- mod pushes the result of the modulus of two values.
- exp pushes the result of exponentiation of two values.
- addmod / mulmod combines add with mod and mul with mod.

*smul and sdiv treat the values as “signed” integers.

Arithmetic Example

Comparison Instructions
Comparison pop one or two values from the stack, performs a
comparison and based on the result, pushes either true (0) or false (1).

- lt / slt pushes true if the top stack value is less than the second.
- gt / sgt pushes true if the top stack value is greater than the second.
- eq pushes true if the top two stack values are equal.
- iszero pushes true if the top stack value is zero.

Comparison Example

Bitwise Instructions
Bitwise instructions pop one or more values from the stack and
performs bitwise operations on them.

- and performs bitwise AND on the top two stack values.
- or performs bitwise OR on the top two stack values.
- xor performs bitwise Exclusive OR on the top two stack values.
- not performs bitwise NOT on the top stack value.
- shr / shl performs a bit-shift right and left, respectively.

Bitwise Example

Memory Instructions
Memory instructions read and write to a chunk of memory. Memory
expands linearly and can be read / written to arbitrarily.

- mstore stores a 32 byte (256 bit) word in memory.
- mstore8 stores a one byte (8 bit) word in memory.
- mload loads a 32 byte word from memory.

Memory Example

Context Instructions (Read)
The following is a non-comprehensive, short list of instructions that can
read from the global state and execution context.

- caller pushes the address that called the current context.
- timestamp pushes the current block’s timestamp.
- staticcall can make a read-only call to another contract.
- calldataload can load a chunk of the calldata in the current context.
- sload can read a piece of data from persistent storage on the

current contract.

Context (Read) Example

Context Instructions (Write)
The following is a non-comprehensive, short list of instructions that can
write to the global state and the execution context.

- sstore can store data to persistent storage.
- logN can append data to the current transaction logs where N is the

number of special, indexed values in the log.
- call can make a call to external code, which can also update the

global state.
- create / create2 can deploy code to a new address, creating a new

contract.

Context (Write) Example

Instruction Set Review

The EVM has a fairly simple instruction set. This section
did not cover every instruction, but rather it will serve as a
foundation for understanding Yul in the following section.

To the left, there is a simple contract that will store the
caller’s address in persistent storage, then return “true” to
indicate success.

Yul Syntax

Section 2

Yul Overview
Yul is a low level language that may be written in-line in Solidity, as a
standalone language, and as a compilation target.

Built into the language are most EVM instructions callable as functions,
basic control flow support, and functions.

Notice that the stack is largely abstracted away with the exception of a
built-in pop function to drop variables.

Syntax Overview

Notice that object and code keywords are only used in
stand-alone Yul files, not in-line Solidity.

Also notice Yul does not support else blocks. To create
if { } else { } functionality, a switch statement may be
used.

The for loop contains the iterator declaration, break
condition, increment logic, then the body.

Comparison to Mnemonic Bytecode

Yul in Solidity

Section 3

Solidity Standards Overview
Solidity has created abstractions for standards that engineers and
auditors must be aware of when dealing with in-line Yul.

- Calldata Layout
- Memory Layout
- Storage Layout
- Event Logging
- Errors

Calldata Layout
Per the Application Binary Interface (ABI) standardization, the calldata
layout is as follows.

- The selector is the leftmost 4 bytes of a Keccak-256 hash of the
function signature (name and argument types).

- Each argument is padded to 32 bytes.
- If an argument is of dynamic size, the 32 byte slot will be a pointer

to the dynamic value later in the calldata.

Calldata Visualization

Memory Layout
Per the Solidity documentation, the first four slots of memory are
reserved.

- 0x00 : scratchspace
- 0x20 : scratchspace
- 0x40 : free memory pointer
- 0x60 : zero slot

Dynamically sized arrays occupy one slot to point to the value in
memory, one slot to indicate length, then one slot for each element.

Byte arrays and strings are similar, except their elements are tightly
packed and aligned to the left.

Memory Example

Storage (Statically Sized Variables)
Per Solidity documentation:

- Storage layout starts at slot 0.
- The data is stored in the right-most byte(s).
- If the next value can fit into the same slot (determined by type), it is

right-aligned in the same slot, else it is stored in the next slot.
- Immutable and constant values are not in storage, therefore they do

not increment the storage slot count.

Simple Storage Example

Storage (Dynamically Sized Variables)
Per Solidity documentation:

- A mapping slot is the Keccak-256 hash of the key value
concatenated with the storage slot.

- A dynamically sized array stores the current length in its slot, then
its elements are stored sequentially starting at the Keccak-256 hash
of the slot number.

- Byte arrays and strings are stored the same way as other dynamic
arrays unless the length is 31 or less. Then it is packed into one slot
and the right-most byte is occupied by two times the length.

Dynamic Storage Example

Storage (Inheritance)
Solidity uses C3 Linearization. In the context of storage, this means the
following.

- Storage slots in a parent contract precedes the the child contract.
- When a child has multiple parents, the order of parent storage is set

by the order of inheritance.
- This process is repeated recursively.
- Storage packing rules are in play when applicable.

Inherited Storage Example

Event Logs
Per the ABI standardization, event logs follow the following rules.

- Events have up to four indexed topics.
- The first topic is always the Keccak-256 hash of the event signature.
- Non-indexed topics are logged by storing them in memory and

passing to the log instruction a pointer to the start of the data and
the length of the data.

Event Log Example

Errors
Per the ABI standardization, errors consist of a four byte error selector
and the error data. There are a few Solidity pre-defined errors, but since
Solidity 0.8.4, developers can define custom errors by name and
argument types.

Error Example

Applied Yul + Solidity

Section 4

Demystifying Production Assembly

Section 5

Further Resources
Educational Resources:

- EVM Codes: https://www.evm.codes/
- Yellow Paper: https://ethereum.github.io/yellowpaper/paper.pdf

Developer Tooling / Languages
- Huff Language: https://docs.huff.sh/
- Foundry Dev Environment: https://book.getfoundry.sh/
- Remix Browser IDE: https://remix.ethereum.org/

https://www.evm.codes/
https://ethereum.github.io/yellowpaper/paper.pdf
https://docs.huff.sh/
https://book.getfoundry.sh/

Thank you!

jtriley.eth
EVM Smart Contract Engineer

jtriley15@gmail.com

 @jtriley_eth

