
Decentralized Threat Detection Bots.
Research and development.

Jonathan Alexander
CTO OpenZeppelin, co-founder Forta



Contributors to this presentation.
Thank you to the following whose work is cited in this presentation:

● Christian Seifert, researcher in residence, Forta 
● Mariko Wakabayashi, lead ML engineer, OpenZeppelin
● Dario Lo Buglio, security researcher, OpenZeppelin
● Artem Kovalchuk, Vyashceslav Trushkov, and Soptq,

independent researchers
● Development teams at Nethermind and LimeChain



Background.

Section 1



Runtime monitoring and threat detection.
Multiple leading security audit firms (OpenZeppelin, ChainSecurity, Halborn, 
Mixbytes) are beginning to make recommendations on post-deployment smart 
contract monitoring. Recommendations to monitor include:

● Protocol assumptions and invariants
● State of critical protocol variables
● Known protocol risks that have been considered acceptable
● Privileged protocol functionality and transfers of privilege
● On-chain / off-chain / cross-chain synchronization (oracles, bridges)
● External contracts that protocol relies on or is exposed to
● Identified user and protocol attack patterns

Try to catch the knowns, the known unknowns, and the unknown unknowns



Runtime monitoring and threat detection.
Multiple leading security audit firms (OpenZeppelin, ChainSecurity, Halborn, Mixbytes) 
are beginning to make recommendations on post-deployment smart contract 
monitoring. Recommendations to monitor include:

●
●
●
●
●
● On-chain / off-chain / cross-chain synchronization (oracles, bridges)
● External contracts that protocol relies on or is exposed to
● Identified user and protocol attack patterns

Very challenging for protocol teams to implement effectively by themselves



Forta is designed to be a 
community monitoring and 
threat detection platform.

● Test network 2021, public network 2022
● Non-profit Forta Foundation backed by

a16z, Blockchain Capital, and many others
● Permissionless node running, security staking
● Permissionless bot deployment, node redundancy
● Community services for alert 

subscriptions and notifications
● Governance: Council at non-profit Foundation, 

Forta Proposal Process, Snapshot voting

github.com/forta-network         app.forta.network         explorer.forta.network     

https://github.com/forta-network
https://app.forta.network
https://explorer.forta.network


Research and observations on attacks.

Section 2



Smart contract attack stages.
Funding 

● New account 
● Mixer, CEX or 

bridge transfers

Preparation 

● Contract 
deployment 

● Token 
impersonation 

● Privilege grants / 
transfers

● Sleep minting
● Ice phishing

Exploitation 

● Flash loans 
● Flashbots
● Re-entrancy 
● Minting
● Anomalous 

balance or price 
changes

● Transfers

Laundering 

● Mixer, CEX or 
bridge deposits 

● Wash trading 

103 of 181 (57%) of DeFi attacks in last 3 years are non-atomic, meaning they could have 
been identified as progressing through the above stages, and even after the first exploit TX 
there was rescue time available (https://arxiv.org/pdf/2208.13035.pdf)



Use heuristics to associate 
and track attacker accounts 
through stages.

Attackers may do funding through a mixer to account A 
but then transfer funds to account B and carry out 
preparation and an exploit from there. Using 
heuristic-based approaches, such as a connected 
component graph algorithm, accounts that interact can 
be grouped into clusters, and then stages of an attack can 
be tracked for a given cluster.

Attackers often use 
more than one account.



Attack contracts differ 
from benign contracts.

In >40% of attacks, 
the attacker deploys a 
smart contract to 
execute the exploit.

Using SVM (support vector machine) classification on the 
top 100 opcode function signatures of 10,000 smart 
contracts sourced from Luabase, and 155 EOAs tagged 
with "exploit" in Etherscan, and a 70/30 split of 
training/testing data, the classifier was able to classify 
98% of benign contracts and 81% of malicious 
contracts.

Benign
Prediction

Malicious
Prediction

Benign 2,946 52

Malicious 4 17



Bytecode analysis can 
reveal attack patterns.

Used the Term Frequency - Inverse Document Frequency 
(TF-IDF) technique from NLP which extracts opcodes in 
unigrams, bigrams, trigrams and 4-grams:
● example unigram: PUSH1
● example 4-gram: PUSH1 MSTORE PUSH1 CALLDATASIZE

Trained on 12,864 benign contracts and 103 malicious 
contracts, fed into logistic regression with stochastic gradient 
descent (SGD) classifier. 

Identified malicious contracts with 88% precision and 59% 
recall. Specifically this technique identified:
● Wintermute 2 Exploit:  

'0x0248F752802B2cfB4373cc0c3bC3964429385c26'
● Audius Exploit: 

'0xbdbB5945f252bc3466A319CDcC3EE8056bf2e569'
Inverse Finance Exploit:  
'0xf508c58ce37ce40a40997C715075172691F92e2D'

For data see https://github.com/forta-network/labelled-datasets

Exploits executed via 
smart contracts follow 
similar patterns.



Heuristic-based analysis 
can detect fraud.

"Fraud" attacks 
produce detectable 
on-chain patterns.

In ice phishing an attacker uses web2 phishing 
techniques to trick users into signing approval 
transactions giving the attacker control of tokens. A 
heuristic-based technique was used to detect multiple 
token approvals/transfers to a single EOA along with 
other heuristics to reduce false positives. During a 1 week 
period in Sept 2022, 21 ice phishing attacks were 
identified from phishing reports filed on ChainAbuse for 
Ethereum mainnet. Of these, the heuristic technique 
identified 12 of the 21 attacks for 57% recall with 95% 
precision.



Threat detection bot techniques.

Section 3



Forta bot development (JS, Python).
Handlers 

Functions
● TransactionEvent.filterLog
● TransactionEvent.filterFunction
● getJsonRpcUrl
● getEthersProvider
● getTransactionReceipt
● getAlerts
● fetchJwt

Return
● Finding

Test and Integration Helpers
● createBlockEvent
● createTransactionEvent
● verifyJwt
● decodeJwt

Test Tools
● CLI Run
● Forta scan node local mode



Atomic detection, account 
clustering, and alert 
pattern matching.

Bot Technique:
Multiple bots working 
together in a group to 
track attack stages.

Relevant bots:

Suspicious contract creation
https://github.com/forta-network/starter-kits/tree/main/suspicious-contract-creation-py

Social engineering (contract spoofing)
https://github.com/forta-network/starter-kits/tree/main/social-eng-contract-py

Ice phishing
https://github.com/LimeChain/forta-starter-kits/tree/main/ice-phishing 

Large transfer
https://github.com/forta-network/starter-kits/tree/main/large-transfer-out-py

Money laundering
https://github.com/forta-network/starter-kits/tree/main/money-laundering-tornado-cash-py

Entity (account) clustering
https://github.com/forta-network/starter-kits/tree/main/entity-cluster-bot

Alert combiner (alert pattern detector)
https://github.com/forta-network/starter-kits/tree/main/alert-combiner-py

https://github.com/forta-network/starter-kits/tree/main/suspicious-contract-creation-py
https://github.com/forta-network/starter-kits/tree/main/social-eng-contract-py
https://github.com/LimeChain/forta-starter-kits/tree/main/ice-phishing
https://github.com/forta-network/starter-kits/tree/main/large-transfer-out-py
https://github.com/forta-network/starter-kits/tree/main/money-laundering-tornado-cash-py
https://github.com/forta-network/starter-kits/tree/main/entity-cluster-bot
https://github.com/forta-network/starter-kits/tree/main/alert-combiner-py


Fork the chain in a bot 
and run simulation tests.
Relevant bots:

Dynamic liquidity testing (try withdrawals for top users)
https://github.com/NethermindEth/Forta-Agents/tree/main/Yearn-agents/InstantWithdrawal

Attack simulation (simulate newly deployed contracts)
https://github.com/Soptq/bot-attack-simulation

Attack simulation with fuzzing
https://github.com/kovart/forta-attack-simulation 

Bot Technique:
Simulate user TXs or 
contract executions to 
identify attacks or 
malicious contracts.

https://github.com/NethermindEth/Forta-Agents/tree/main/Yearn-agents/InstantWithdrawal
https://github.com/Soptq/bot-attack-simulation
https://github.com/kovart/forta-attack-simulation


Deploying ML models in bots.
Serialize the model 

Add the model to the bot dockerfile 

Load model in the initialize handler 



Time series analysis, 
anomaly detection, opcode 
clustering and analysis.

Bot Technique:
Use ML models to 
identify anomalous 
activity or malicious 
contracts.

Relevant bots:

Smart Price Change Detector
https://github.com/0xidase/Smart-Price-Changes-Agent 

Time Series Analyzer
https://github.com/forta-network/starter-kits/tree/main/time-series-analyzer-template  

Contract Deconstructor
https://github.com/OpenZeppelin/contract-bots-gang/tree/master/contract-deconstruct 

Malicious Smart Contract ML Detector
https://github.com/forta-network/starter-kits/tree/main/malicious-smart-contract-ml-py 

https://github.com/0xidase/Smart-Price-Changes-Agent
https://github.com/forta-network/starter-kits/tree/main/time-series-analyzer-template
https://github.com/OpenZeppelin/contract-bots-gang/tree/master/contract-deconstruct
https://github.com/forta-network/starter-kits/tree/main/malicious-smart-contract-ml-py


Challenges.

Section 4



Future areas to research.

● Trusted private scan pools 

(private bots)

● Pre-submission TX scanning

● On-chain alerts

Known challenges:
Atomic attacks, 
private transactions, 
monitoring secrecy, 
response latency.



To learn more or to get involved 
please visit forta.org.



Thank you!

Jonathan Alexander
CTO OpenZeppelin

jonathan@openzeppelin.com

  @jalex206


