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Compositionality is the study of how systems 
compose to give life to more

complex systems.

● Systems are things we can transform and act upon

● Processes are things that act on systems, transforming them.

Big insight from modern mathematics: often the best way to understand 
systems is by studying their processes: describing things in terms of 
how they interact.



Systems and Processes
Example: Numbers

Here we see a process:

● Taking a number as input
● Spitting out a number as output
● The process sums 1 to the input.



Systems and processes
Composition

Processes can be composed!

Composition is obtained by connecting wires 
with matching types.

On the right, we are composing the process in the 
previous slide with itself.



Systems and processes
Identity process

For each system, there is a “do nothing process”: 
…it just outputs the input as it is!

In our numbers example, the identity process is 
the one adding 0 to the input.

As identity processes do nothing, we resolve to 
just not drawing them.



Systems and processes
Identity laws

As identity processes do nothing, if we compose 
them with any other process the result will be the 
process we started with.

Graphically, this is obvious!



Systems and Processes
Example: Gravitation

Here on the left you see a typical “Sun - Earth” 
gravitational system.

● We have a process called evolve:
○ You feed to it some initial positions 

and velocities
○ It returns the position and velocity 

some time later (e.g. 1 second later)
● Identity is “evolve for 0 seconds”
● Composition is sum: “evolve for 1 second” 

composed with “evolve for 2 seconds” 
equals “evolve for 3 seconds”.



Systems and Processes
Connectivity Matters!

It does not matter how we arrange processes 
spatially. It only matters how they connect to 
each other. Pictures can be topologically 
deformed!

…But a composition of processes is valid only if 
their types match!



Systems and processes
Types are important!

Imagine you have a car: a car is designed to need gas to run, but you are 
physically able to pour any liquid in the gas tank.

This is because the gas tank opening has type liquid and not type gas. And yet, 
filling up the tank with water will have (very) undesirable consequences.

Take home message: Types are important! We can type things more strictly 
(which is safer but reduces our ability to compose) or more liberally (which makes 
prototipation easier but may incur in more emerging behavior later on). Finding 
the right balance is an art and not a science!



Systems and processes
Where do systems and 
processes live?

Compositionality is 
based on Category 
Theory.

It is evident by now that defining which systems 
and processes are admissible in your setup 
matters.

Compositionality is based on category theory, 
which defines the universe in which we act: It is a 
mathematical field concerned with the formal 
study of recurring patterns.

Formally, we are always working in a category of 
systems and processes that defines our 
interests.
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Category Theory
Defining categories

To formally define a category, you must specify:

Objects: these are the systems you want to study;

Morphisms: these are your processes;

Identities: for each object (a system) we require a particular morphism (a process) 
representing the ’process that doesn’t do anything’.

Composition law: you have to say how processes compose. This rule must obey some 
laws (associativity of composition, identity laws).



Category Theory
Examples of categories

Here are two interesting examples of categories:

● There is a category Set of sets and functions. Sets are the objects, functions are 
morphisms, composition is function composition. For each set there is an identity 
function doing nothing.

● There is a category Data of data types and programs. Data types are the objects, 
programs are processes turning data types into other data types. Composition is 
program piping. Identity returns the input without doing anything.



Category Theory
Intentional vs. Extensional perspective

In Set, consider the set Z of integer numbers. There is exactly one function Z → Z That takes 
a number and adds a number n to it.

On the contrary, in Data there are multiple data types implementing the integer numbers. 
Choose one, say Int. There are many different programs Int → Int summing n to your term. 
Here go a couple:

for ( i = 0 , i <= n , i ++) 
{
x = x + 1;
}
return x ;

return x + n ;

Set is extensional: it only cares about how things behave. Data is intensional: it cares about how 
things are implemented!



Category Theory
Functors

Functors are morphisms between categories. 
That is, processes that allow to change our 
underlying universe. If C, D are categories, A 
functor C → D must:

● Send objects of C to objects of D;
● Send morphisms of C to morphisms of D;
● Send identities to identities;
● Respect composition.

Functors are themselves processes! But in which 
universe do they live? In Cat, the category of 
categories and functors between them!



Category Theory
Example of functor

We can define a functor Data → Set that:

● Sends every datatype to the set it implements, e.g. Int is sent to Z;
● Sends every program to the function it implements.

We see that the program that doesn’t do anything is sent to the identity function, and that 
piping programs amounts to compose the functions they are mapped to.

That is, there is a functor allowing us to go from a “intentional perspective” where we do care 
about implementation details to an “extensional perspective” where we are only interested in 
behavior.
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Process Design
Example: Moving on a grid

Consider someone moving on a grid. In this case, 
the state of our system is a couple of integers 
representing coordinates. Processes are 
expressed as compositions of four fundamental 
processes, “go up/down/left/right 1 step”.

Notice moreover how some equations hold. For 
instance the fundamental processes ‘commute’.



Process Design
Example: Moving on a grid, 
concurrently

Suppose you have multiple agents moving on the 
grid. We now want to represent multiple systems 
at the same time.

We have the same equations as before, but as a 
consequence of “only connectivity matters” we 
also have this equation on the left, where x, y are 
any processes, modelling concurrency.

The underlying universe of a concurrent system 
like this one is a particular type of category, called 
monoidal category.



Process Design
Example: accessing and 
rewriting records

Consider the record on the right. We want to define 
processes to read/replace subfields (e.g. name).

Moreover, notice that in this example person is just a 
couple of terms of type name and surname, 
respectively. 

We also want to be able to replace a subfield of a 
given type with a subfield of a different type, e.g. 
replacing surname with age. In this case, the overall 
type of person will have to change, as it contains 
now a couple of terms of type name and age.

person : {
name : John
surname : Doe

}



Process Design
Example: accessing and 
rewriting records, 
compositionally.person : {

  name : John
  address : {
    street : Calle 24
             No.38-71
    city : Bogotá
  }
}

Moreover, we want our processes to be 
compositional. For example, consider the record 
on the left.

Address is itself a record. To view/rewrite, say, 
street from person we would like to be able to 
compose setters/getters of person and address.
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Lenses and Optics
The solution to our 
problem: lenses

Consider a record of type A (e.g. person) and a 
subfield of type S (surname). Consider moreover 
another type T (e.g. age). A lens is a couple of 
processes called Get and Put, respectively.

● Get models the function returning the value of 
subfield S of A (read name from person). 

● Put models the function replacing the subfield 
S of A with a value of type T (replace surname 
with age in person). It returns a new record 
having type B.

Given A, any subfield S and any arbitrary type T , we 
can write software to automatically infer B and define 
the processes above.



Lenses and Optics
Lens composition

But how do these things compose?

Suppose we have record A with subfield S

● If S is itself a record, we also have the lens 
in the right column.

● In particular if we rewrite V with W the type 
of S changes to T.

● We use A, S, T, to instantiate the lens in the 
left column.

…Then we can compose them, as in the third and 
fourth row!



Lenses and Optics
Drawing lenses

This composition seems very cumbersome. It 
becomes much better if we represent a lens 
graphically as on the left.

Notice how we flipped Put , so now arrows go 
both ways. 

We interpret this as a process saying: 

“If you give me an A, I’ll read field S and forward it. 
If someone returns something of type T , I’ll 

replace field S in A with it and return a B.”



Lenses and Optics
Lens composition, graphically

Furthermore, composition now works graphically as usual!



Lenses and Optics
A different perspective

In the last slides we represented a lens as in the 
first row. 

By topologically rearranging things around, we 
can represent the same lens as a sort of comb, 
like in the second row.

Here the bidirectional nature of lenses is even 
more evident: The comb receives an A, sends out 
a request of type S, waits for an answer of type T 
and produces an output of type B.



Lenses and Optics
Comb composition

In this new framework, we compose combs by nesting.



Lenses and Optics
Combs as incomplete processes

The comb perspective makes us realize something: a comb looks like a traditional process 
such as the one we saw in the early slides, but it is missing a piece. Indeed, if we had some 

process S → T we could fill the comb:

Hence you can view a comb as a process that kinda says: I am an incomplete process. Give 
me a way to turn an S into a T and I will behave as a standard process!’



Lenses and Optics
Abstracting things away

Now we realize that we didn’t just model reading/accessing records. We found a pattern. 
There are many things that compose this way! Let’s abstract details for a second:

These processes represent two different points of view on the same thing: bidirectional 
transformations. We can easily turn one view into the other. Most importantly, we can ’fill’ the 
insides of these processes with pretty much whatever we like.



Lenses and Optics
Example: escrows

We can represent an escrow trade between parties A 
and B as an optic.

● A locks some funds in a vault, and sends a 
’waiting for delivery’ message to B;

● After receiving this message B knows that 
funds are locked, and ships the goods;

● When delivery happens, A provides 
confirmation, that ‘completes the comb’ and 
allows B to unlock funds.

Comb composition in this setting models the idea 
that B can in turn sub-escrow the trade to some other 
party C : a dropshipping logic.



Lenses and Optics
Example: open games

We can use bidirectional transformations to model a 
compositional version of game theory. This will be 
demoed in detail in Part II by Philipp.

We represent a game as a bidirectional transformation: It 
observes something from the context (this could be some 
other player’ move), then takes an action. This action will 
have some impact on the context that will result in some 
payoff. 

The ‘mysterious’ feedback wires is what enables 
composability: you have to think of it as the portion of 
payoff you have to return to someone else (e.g. repaying 
a debt you took to bet on a betting game). Inside the box 
live strategies, that determine actions from observations.



Lenses and Optics
Example: prisoner dilemma 
[1/2]

As a last example, let us model prisoner 
dilemma. It is the composition of three open 
games, depicted on the right.

Two subgames represent the players. These are 
processes with no wires on the left, since a player 
in prisoner dilemma doesn’t observe anything, 
just makes a choice. Similarly, the payoff does 
not produce any feedback.

Inside these two processes live players’ 
strategies.



Lenses and Optics
Example: prisoner dilemma 
[2/2]

The subgame on the left is the payoff matrix. 

Notice how players’ actions are the matrix 
observations. Similarly, the matrix doesn’t receive 
any payoff, it merely distributes payoffs to 
players in the form of feedback. 

It has no strategic content.

Notice how a game actions (resp. payoffs) are 
some other game’s observations (resp. 
feedbacks)!



The theory part is 
concluded!
The tutorial culminated with the introduction of bidirectional 
transformations. We generalized techniques invented to 
model database read/write to design completely different 
processes, such as escrow trades or game theory.

Bidirectional transformations have countless examples: they 
can be used to model server infrastructure; machine learning 
algorithms; backpropagation and gradient descent; dynamical 
systems, etc.

Compositional techniques in general have even more broader 
applications: programming language theory; quantum 
mechanics, computing and programming; concurrency, etc.

 I hope this tutorial catpilled you enough to start thinking 
compositionally!

In this tutorial we 
saw how we can use 
compositionality to 
guide our intuition in 
process design.

We built notions from 
the ground up, 
starting from simple 
examples.



Thank you!
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Compositional Game Theory

A new formal language for game theoretic reasoning 

Based on the categorical framework Fabrizio introduced

Software implementation for game-theoretic modelling



What the implementation provides

Model strategic interactions

Analyze models in various ways: 

● Interactively 
● As automatic tests running in the back
● Integrated with ML frameworks

 



Key innovation

Compositionality!

Seamless de-composition of model and code

● You can approach the model in a divide-and-conquer 
fashion

● You can modularize your code and it will maintain a 
proper game-theoretic meaning



How is this useful?

A way to deal with complex scenarios

Speeds up process of game-theoretic modelling

Can be part of a larger software stack



Plan for part 2

How to represent games in the engine?

How to analyze games in the engine?

Leading example: simplified staking model



Background: Theory of Open Games



Basic Open Game



Building blocks and operations

●Compose larger open games from simpler open games

●Atomic building blocks: decision, computation

●Composition operations: sequential and parallel



Parallel 
Composition



Parallel 
Composition



Sequential Composition



Sequential Composition



Prisoner
Dilemma



Implementation



Implementation

DSL embedded in Haskell

Under development

Used for staking protocols, token design, and 
applications outside of crypto



How to represent games?



_nameOfGame = [opengame|

inputs :X;
feedback :S;
:----------------------:

INTERNALS OF G

:----------------------:
output :Y;
returns  :R;

|]



:----------------------:

inputs  :x;
feedback  :s;
operation : dependentDecision _playerName_;
output  :y;
returns   :r;

. . .

:----------------------:



prisonersDilemma = [opengame|

inputs    :   ;
Feedback  :   ;
:------------------------------------------:

inputs    :   ;
feedback  :    ;
operation : dependentDecision “player1” (const 

[Cooperate,Defect])   ;
outputs   : decisionPlayer1   ;
returns   : payoffPlayer1   ;

inputs    :     ;
feedback  :   ;
operation : dependentDecision “player2” (const 

[Cooperate,Defect])   ;
outputs   : decisionPlayer2     ;
returns   : payoffPlayer2   ;

inputs    : decisionPlayer1,decisionPlayer2; 
Feedback  :   ;
Operation : forwardFunction payoffsPD   ;
outputs   : payoffPlayer1,payoffPlayer2   ;
Returns   :   ;

:------------------------------------------:

outputs   :   ;
returns   :   ;
|]



Staking example



A simplified staking model 

Focus on compositionality principle when representing games

Illustrate the “zooming in” for the analysis 

(Based on a blog post – with more details)



Setup 

In each period: 1 proposer; 2 validators

Proposer decides whether to extend the chain and if so on which 
block

 The validators observe the proposed new head and the last chain; 
they then vote on the block which they view as the legitimate head



Chain example



Proposer action



Validator actions



Fork after proposer actions



Conclusion



Future development of the engine 

Towards “economic” verification: decompose EVM contracts into 
open games (current work with people from the EF Formal 
Verification Group)

Extensions of the available analytics (and model building block): E.g. 
AMMs related questions 

Extensions of the engine itself: theory development



Compositionality beyond Open Games

Fabrizio introduced the quest: How do systems compose? 

Current theory development of the theory behind open games 
further generalizes the framework beyond game theory

Control Theory, Reinforcement Learning, Active Inference, ...

What the abstraction enables: Recognize common patterns and be 
able to consider new blends of systems



Thank you!

Philipp Zahn
20squares

philipp@20squares.com


