
Building a Thriving
Developer Community

Sam Flamini
DevX Lead, Superfluid

Let’s Paint a Scenario…

And You Just Sponsored
a Hackathon…

You’re
building a
really cool
protocol

And You Just Sponsored
a Hackathon…

You’re
building a
really cool
protocol

You’ve paid $10k in travel
expenses and sponsorship fees

And You Just Sponsored
a Hackathon…

You’re
building a
really cool
protocol

You’ve paid $10k in travel
expenses and sponsorship fees

You tell everyone how excited
you are to see what hackers
will build

And You Just Sponsored
a Hackathon…

You’re
building a
really cool
protocol

You’ve paid $10k in travel expenses
and sponsorship fees

You tell everyone how excited you
are to see what hackers will build

And you tell your team to be ready:
the event will be intense & devs
will have lots of questions

Then…

Then…

Nothing…

The Hackathon Flop

You get 3 submissions

● 2 of them are Figma files that don’t
actually use your tech

And your docs get ripped to shreds by
frustrated developers

It’s not enough to build awesome tools

It’s not enough to build awesome tools

You need people to know about them, and
to make using them a great experience

Who Am I?
● Lead DevX at Superfluid
● Reformed SaaS salesperson & self

taught developer
● Host of Devs Do Something podcast

At Superfluid:

● 300+ projects built on Superfluid in the
last ~12 months

● Teams building on Superfluid have
raised 8 figures in total venture + grant
funding

I have
learned a
lot in the
devrel
trenches

And I’m Still Learning…

I have
learned a
lot in the
devrel
trenches

And I’m Still Learning…

I have
learned a
lot in the
devrel
trenches

I know the feeling of
sponsoring a hackathon, and
getting just a handful of
submissions

I know the feeling of having
our docs torn to shreds by
frustrated developers

Superfluid is a cool protocol

Superfluid is a cool protocol

Which makes my job
easier…

But we’ve had to learn a *lot*

But we’ve had to learn a *lot*

Today, I’ll share some of those lessons

Why Build a Developer
Community?

If Your Tech Matters to People, You Win

If Your Tech Matters to People, You Win

What Does Success Look Like?

What Does Success Look Like?

What Does Success Look Like?

1) An ecosystem of *new* and successful
applications on top of your tech

What Does Success Look Like?

1) An ecosystem of *new* and successful
applications on top of your tech

2) Integrations between your tech and
existing products

Enable new applications:
- Uber, Lyft, AirBnB

Integrate with existing
products:
- Literally anything

that needs to send SMS
notifications

Web2 Example: Twilio

Enable new applications:
- Uniswap, Maker, ENS

Integrate with existing
products:
- Global settlement

layer + non financial
use cases

Web3 Example: Ethereum

What Is Developer
Relations?

The Dev & Rel of DevRel

Developer
Libraries, APIs, Docs,
Tooling, Smart Contracts

● Looks like engineering
● You must PM your

developer products

The Dev & Rel of DevRel

Developer
Libraries, APIs, Docs,
Tooling, Smart Contracts

● Looks like engineering
● You must PM your

developer products

The Dev & Rel of DevRel

Relations
Tutorials, videos, podcasts,
workshops, meetups

● Looks like marketing
● But CANNOT feel like

marketing

Developer
Libraries, APIs, Docs,
Tooling, Smart Contracts

● Looks like engineering
● You must PM your

developer products

The Dev & Rel of DevRel

Relations
Tutorials, videos, podcasts,
workshops, meetups

● Looks like marketing
● But CANNOT feel like

marketing

Great Developer Experience Teams Have Both!

The Dev In DevRel

What does this mean?

You Need to
PM Your
Developer
Products

1) Your docs are your most
valuable product

2) Understand your
developer personas

3) Be mindful of your
abstractions

“We view all user input as error”

Elon Musk on Tesla Autopilot

For your docs

For your docs

View all developer questions as error

Your Docs Are Your Most
Valuable DevX Product

No matter how good your docs are, you will
still get developer questions

● Obviously

But it’s a useful mindset to view developer
confusion as a failure of your documentation

Every minute spent making your docs better is
worth an hour of answering individual questions

How do you maximize the utility of your
docs & developer tooling?

How do you maximize the utility of your
docs & developer content?

Start by defining your developer
personas

Case Study: Superfluid
Developer Personas

Case Study: Superfluid
Developer Personas

Segment By Skill Level

● Beginner
● Intermediate
● Gigabrain

Case Study: Superfluid
Developer Personas

Segment By Skill Level

● Beginner
● Intermediate
● Gigabrain

Segment By Role/Intent

● Hackathon/Indy Dev
● Dev at potential

integration partner
● Future

founder/entrepreneur

For Beginners/Hackathon Devs

Docs

● Quickstart page

Tooling

● JS SDK
● Simple solidity libraries

Tutorials/Examples

● Beginner front end examples
● Zero to Hero video series + examples in Github

For Intermediate Devs

Docs

● Reference Docs
● Advanced guides sorted by topic

Tooling

● Typings for the SDK for 1st class Typescript support
● Developer console

Tutorials/Examples

● Full fledged example applications

For Entrepreneurial Devs

Docs

● A library of ideas we’d like to see built

Tooling
● Superfluid Reactor Program

Tutorials/Examples

● ‘Primitives’ which are useful as building blocks for
larger applications

Other Considerations

Be Mindful of Your Abstractions

● Too little abstractions in your APIs/Libraries = you
lose beginners

● Too many abstractions = you frustrate
intermediate/advanced devs, and stifle innovation

Other Considerations

Be Mindful of Your Abstractions

● Too little abstractions in your APIs/Libraries = you
lose beginners

● Too many abstractions = you frustrate
intermediate/advanced devs, and stifle innovation

Naming Matters

● We haven’t done very well with this (:
● Think about this for your smart contracts!

Most Developers Aren’t Good at
Explaining Their Product to Newcomers

Why?

What does this mean?

They’re blind
to assumed
context

You need to go back to
zero and often explain
things from the ground up

Engineers are deep in the
weeds, it’s not easy to
be aware of how much
context they have

Developer Relations

You Can’t
Market to
Developers

You need to pique
curiosity instead

You Can’t
Market to
Developers

You need to pique
curiosity instead

You Can’t
Market to
Developers

1) What doesn’t work?

2) What does work?

3) Be mindful of
assumed context

What doesn’t work when marketing
developers?

What Doesn’t Work

Traditional ‘demos’ or sales/marketing
collateral or language

Developers can see it from a mile away

What Doesn’t Work

Anything that feels like shilling

“I can’t define shilling, but I know it when I see it”

What Doesn’t Work

Convincing people to use your tech for use cases that
don’t make sense

Engineers can sense the dishonesty, or they’ll
discover it later

Sometimes the most persuasive thing is being honest
about what your tech isn’t good for

What does work when marketing to
developers?

What Does Work

Focus on education

Create useful technical content, even if it’s just
adjacent to your technology!

Good Content: Example 1

Good Content: Example 2

What Does Work

For your protocol/technology: Create interesting
examples & proof of concepts

Stay up to date with popular dev tools and other
technologies

● Create tutorials & examples of how your product
can be *integrated* with them

● It helps you stay in the conversation

What Does Work

Create superstars in your developer community

● Make them feel special

Promote the projects that your community builds

Spending Money on
Developer Acquisition

What is it spent on?

Our industry
spends a
lot of
money on
developer
acquisition

1) Hackathons

2) Bounties

3) DevRel Team Members

How Do You Get the Most Out of Your
DevX Spend?

Doing Hackathons, Bounties, and DevRel
Teams the Right Way

You cannot throw money at your
community and hope for a good outcome

You get out what you put in

Hackathon Selection Matters

You’re looking for high quality co sponsors, and
organizations that put out good content of their own

Ask yourself: what kind of community will this
hackathon attract?
● And is this community who I want building on our

protocol?

ETHGlobal & Devfolio are examples of great orgs

Running the Hackathon

Prepare some ideas to hack on before the event

● Ideally, these ideas also integrate well with
other sponsors

● Hackathon devs love to “prize stack”
● We have a page at hack.superfluid.finance

Be as friendly as possible to every dev you meet

Don’t use bounties to complete tasks

Don’t use bounties to complete tasks

Use them to get gigabrains looking at
your repo

Bounties

We have mixed results when using bounties for task
completion

However, they are great for two things:
● Getting smart devs to learn more about your

product or protocol
● Crowdsourcing tutorials & educational content

DevRel Failure Modes

Common Failure Modes

1) Trying to throw money at the problem

2) Not seeding your community with ideas & examples

3) Assuming too much context in your docs,
tutorials, & talks

4) Doing too much low leverage work

5) Not being willing to do any low leverage work

Remember What Success
Looks Like

What Does Success Look Like?

A thriving community of developers who:

1) Tell their friends, bosses, and teammates about
your product

2) Help other devs within your community

3) Build integrations between your product and their
own

4) Launch businesses and projects of their own on
your tech

Get in touch

I’m still learning too!

@sflamini5

Sam F | Superfluid#0902

Thank You!

