
Build a Dapp on Optimism
And conquer L2 Bridging

Emily Lin
Developer Evangelist, Truffle @ ConsenSys

Disclaimer: I do not work for or
represent the opinions of Optimism

I just think the project is super cool 😎
And Truffle X Optimism may be the most

ambitious crossover of all time

Optimistic rollups
● L1s vs. L2s
● What is an optimistic rollup?

Bridges
● What is a bridge?
● Bridge hacks

Contract walkthrough
● ICrossDomainMessenger
● Standard Token Bridge

Let’s build a DApp!
● Set up
● Unbox the Truffle box
● Build a marketplace
● Add Bridget the bridge widget!

Agenda

Optimistic roll ups

Section 1

A crash course

What is layer 1?

Let’s talk L1s and L2s

Layer 1 (L1) is the underlying foundation and base
blockchain that various layer 2 (L2) networks build on
top of. For example, Ethereum is an L1 that is comprised
of node operators to secure and validate the network,
block producers, the history of transaction data, the
consensus mechanism the blockchain itself and

What is layer 2?
L2 is a separate blockchain that increases transaction
speed and throughput, while fully or partially deriving its
security from Ethereum. Additionally, Layer 2 projects
rely on Ethereum for data availability by posting their
transaction data onto Ethereum.

source: https://ethereum.org/

https://ethereum.org/

The blockchain trilemma

Why should we care?

The blockchain trilemma is a “pick 2” situation between
decentralization, security, and scalability. Ethereum’s
growth has greatly affected scalability: it can only process
~15 transactions/sec. Between the 3, the Ethereum
community has chosen decentralization and security.
Sacrificing scalability means increasing gas prices,
which jeopardizes the adoption of Ethereum by pricing
out users.

Layer 2 to the rescue!
As the demand to use Ethereum grows, the network
becomes congested. L2s decrease L1 congestion by
bundling transactions to be submitted to Ethereum, thus
increasing scalability while inheriting Ethereum’s data
availability, security, and decentralization.

source: https://ethereum.org/

https://ethereum.org/

What is an optimistic rollup?
Rollups “roll up” and execute hundreds of transactions outside of the L1 into a
single transaction that is then submitted to the L1. Rollups come in 2 flavors:
optimistic and zero-knowledge.

With optimistic rollups….

● Transactions are assumed to be valid (feeling optimistic 😊) and don't
publish proofs of validity

● Before publishing, there’s a challenge period - if a transaction is suspected to
be invalid, a fault proof is ran to see if this has taken place

Whereas with zero-knowledge rollups…

● Transactions are published with proofs of validity

source: https://ethereum.org/

https://ethereum.org/

Bridges

Section 2

Another crash course

What is a bridge?
Bridges connect 2 blockchain ecosystems (i.e., L1 to L1, L2 to L1, L1 to L2) by
enabling….

● Cross-chain transfer of assets and information

● Dapps and users to take the “pros” of various blockchains and platforms to
alleviate the “cons”

● L1 contracts can trigger functions on L2 contracts and vice versa

A user locks assets on L1 and receives equivalent assets on L2. When bridging back to
L1, the assets are burned on L2, releasing the locked assets to the user on L1.

NOTE: A set bridge standard does not yet exist!

source: https://ethereum.org/

https://ethereum.org/

OH NO, A BRIDGE HACK!
“$2 billion in cryptocurrency has been stolen across 13
separate cross-chain bridge hacks, the majority of which
was stolen this year. Attacks on bridges account for 69%
of total funds stolen in 2022 so far. ” - Aug 2, 2022

(and literally the BSC bridge recently RIP)

OH MY,WHY??
There’s not an established bridge design, but because
users typically transfer funds to a bridge protocol, which
are then locked into the contract, bridges lock up a lot of
liquidity, acting as a prime centralized point for attack.

Ser, how fix?
● Current processes identify and authenticate target and source blockchains

by chainId - ensure that this is checked during the crosschain message
(recent BSC hack!!)

● Safeguard a contract’s private key through a Hardware Security Module (HSM),
Key Management System (KMS), hardware wallet, offline wallet, or secure vault
technology, or share ownership through a multi-signature wallet

● Strengthen security for the web layer, which is centralized

So many more…
https://entethalliance.github.io/crosschain-interoperability/crosschainsecurityguideli
nes.html

source: https://entethalliance.github.io/

https://entethalliance.github.io/crosschain-interoperability/crosschainsecurityguidelines.html
https://entethalliance.github.io/crosschain-interoperability/crosschainsecurityguidelines.html
https://entethalliance.github.io/

My hero 😗
Optimism has provided contracts and an SDK
that abstract away the need for us to write our
own bridge contracts. These deployed contracts
are what allows us to do the cross-chain
transfer of data and assets.

Writing a bridge contract can be complex and
requires thorough security auditing. That’s why
we’ll be utilizing Optimism’s provided bridge
contracts instead of writing our own.

�� ✨ �� ✨

Contract walkthroughs

Section 3

One more crash course 😱

Transfer data
To transfer data, each layer has its own messenger contract that is responsible for
calling the other contract’s function. The main points are…

● There are two pre-deployed contracts: L1CrossDomainMessenger.sol and
L2CrossDomainMessenger.sol

● They are pre-deployed, and you can find their addresses in the Optimism
monorepo:
https://github.com/ethereum-optimism/optimism/tree/develop/packages/contra
cts/deployments

source: https://community.optimism.io/docs/developers/bridge/messaging/

https://github.com/ethereum-optimism/optimism/tree/develop/packages/contracts/deployments
https://github.com/ethereum-optimism/optimism/tree/develop/packages/contracts/deployments
https://community.optimism.io/docs/developers/bridge/messaging/

sendMessage
● Allows us to call an L1 contract’s function

from the L2 contract and vice versa

● To call a function on an Optimism contract
from Ethereum:
○ _target is the Optimism contract

address
○ _message is the encoded version of

the function and inputs
○ _gasLimit is how much gas you are

willing to pay

source: https://community.optimism.io/docs/developers/bridge/messaging/

https://community.optimism.io/docs/developers/bridge/messaging/

sendMessage
● _gasLimit fees explained

○ L1 -> L2 requires L2 gas
■ First 1.92 million L2 gas is free
■ If you need more, specify on

_gasLimit at a 1:32 ratio
■ BUT if you specify 80k over

1.92 million, but spend less
than 1.92 million, you still have
to pay 80k/32 = 2500 L1 gas

○ L2 -> L1 requires 2 transactions
■ L2 fee to initiate transaction
■ L1 fee to finalize transaction

source: https://community.optimism.io/docs/developers/bridge/messaging/

https://community.optimism.io/docs/developers/bridge/messaging/

xDomainMessageSender

● Accessing msg.sender will return the
calling contract, which is the messenger
contract

● xDomainMessengerSender allows us to
identify the “actual” contract who is calling
the function (i.e. Optimism contract using
the messenger contract to call Ethereum
contract function)

source: https://community.optimism.io/docs/developers/bridge/messaging/

https://community.optimism.io/docs/developers/bridge/messaging/

Transfer ETH and ERC20s
Transferring ETH and ERC20s are so common that Optimism has provided a “Standard Bridge” for us to do
that, which are powered by the messengers we had talked about in the previous slides. The main points to
know about the Standard Bridge are…

● There are 2 main contracts: L1StandardBridge.sol and L2StandardBridge.sol

○ Find a detailed walkthrough of these contracts here:
https://ethereum.org/en/developers/tutorials/optimism-std-bridge-annotated-code/

● You CANNOT bridge every ERC20, but must make a PR to add it to Optimism’s token list

○ Find the token list here:
https://github.com/ethereum-optimism/optimism-tutorial/tree/main/standard-bridge-standard-to
ken

● Deposit means moving ETH and tokens from L1 to L2

● Withdraw means moving ETH and tokens from L2 to L1

source: https://ethereum.org/en/developers/tutorials/optimism-std-bridge-annotated-code/

https://ethereum.org/en/developers/tutorials/optimism-std-bridge-annotated-code/
https://github.com/ethereum-optimism/optimism-tutorial/tree/main/standard-bridge-standard-token
https://github.com/ethereum-optimism/optimism-tutorial/tree/main/standard-bridge-standard-token
https://ethereum.org/en/developers/tutorials/optimism-std-bridge-annotated-code/

BUIDL BUIDL BUIDL

Section 4

Not a crash course, but maybe a crash and burn

What are we building?

A NFT Marketplace on Optimism

UX Problem:

● Users have to go to a separate website
to bridge their ETH

Solution:

● Bridget the bridge widget!
● Embed L2 bridging directly in your dapp

What you’ll need
● Truffle

○ Optimism Bridge Box - example code for bridging in Optimism

What you’ll need

● Infura
○ Connect to the Goerli and Optimism Goerli testnets
○ IPFS project for uploading NFT metadata

● MetaMask
○ Deploy your contracts and interact with your dapp

● Goerli ETH, Optimism Goerli ETH, and Goerli DAI

Are we doing this live?

Hehehehehe YES.

Fingers crossed nothing goes
wrong 😅

Are we doing this live?

Hehehehehe YES.

Fingers crossed nothing goes
wrong 😅

Please enjoy this low quality res pic instead

L1 setGreeting on L2

L2 setGreeting on L1

What’s next?

Section 5

A crash course

What’s next?

Section 5

JK not a crash course

Potential Extensions
● Build a chat messenger using the Greeter contracts

○ In this case, you’ll need Truffle to deploy the contracts to be utilized in
the client (starting with the Optimism Bridge Box)

● Make Bridget compatible with other networks and ERC20s

● Tinker around with our other L2 boxes: Arbitrum and StarkNet (coming soon)

Truffle’s plans for multi-chain
Multi-chain dapps are hard - complex deployment scripts and testing. What is Truffle doing to
solve this problem?

● Declarative deployments

○ Declare your end state and Truffle shall grant your wish

○ Environment configs - test, dev, prod environments

● Ganache plugins

○ “L2 flavored” versions of Ganache - imagine forking Optimism to interact with its
mainnet deployed contracts rather than just on Goerli

● Education

○ Nov 3rd: Web3 Unleashed livestream with Annie from Optimism to dive deeper
into rollups, bridges, and Optimism Bedrock in the words of an actual expert

Thank you!
Emily Lin

Developer Evangelist, Truffle@ConsenSys
https://beacons.ai/_emjlin

 @_emjlin

