
Blockchain Indexers: 101

Benjamin Memisevic
Smart Contract and Software Engineer

Background

Section 1

This Workshop and Me
■ Worked in the space since 2018
■ SC Engineer at Labrys and TracerDAO/Mycelium
■ Team Lead Engineer at Mycelium delivering

on-chain monitoring of oracle systems
■ Spent 2 years working on Indexing and event

processing pipeline solutions

Please ask questions as we go along!

Etherscan: Lots to see

- Clicking through and exploring is hugely beneficial,
you’ll always discover something new/interesting

- Bot attempting to quickly fanout eth to multiple
addresses (not a contract but an EOA!)

Observability and Transparency: Pros and Cons

Question

What is an Indexer?

Section 2

Extract:Transform:Load

- Extract: Request data from a Node
- Transform: Change its form to be easily

human/machine readable
- Load: Insert it to have a better retrieval strategy or

pass it to another service

Why Make an Indexer?

Retrieval Time

- Creating a unique index allows
quick retrieval

- Reduce node requests

Example:
 Index to fetch the transaction
history of an address

Non-Permanent Data

- Store mempool history for developing
arbitrage strategy

- Store and simulate transactions and their
results

- Gas estimation history of local
development environment

Breaking Down an
Example: Chainlink

- Even decoded it’s
difficult to tell what’s
going on

- Some points are
obvious: answer

- Some are very
confusing
(i.e. observers)

Step 1: Understand the System and the Contracts

Chainlink: Off-Chain-Reporting

- Instead of having each node individually send a
transaction with their “answer” one “transmitter”
will send everyone's data on their behalf.

- This reduces gas usage; Chainlink used to utilize a
majority of Mainnet’s bandwidth by itself!

- The transmitter also aggregates (takes a median)
of everyone's answer and that is the price of the
feed for that “round”

Here’s the timeline.

Price Deviation

Chainlink oracles detect a
price deviation and a round
is initiated. All oracles
assigned to the feed
retrieve a price from their
subscribed APIs.

Leader Collects

The round leader collects
all of the different answers
from each oracle

Submit On-Chain

The answer is submitted
on-chain by the transmitter
as well as every oracles
individual answers

More Legwork:

- Observers tell us who
is who

- Observations are too
large to make sense: a
multiplier is being used.

Adding Complexity: Block by Block Changes

Multipliers and
transmitters can
change every block!

07 01 0A 03 … … … … … …

7 1 10 3 … … … … … …

Database vs Node Retrieval
- Getting this data from a node is very complex and

expensive
- Instead of all of this processing, eth calls, and fetching we

could instead request this data through SQL
- Imagine trying to get the average oracle accuracy for a

specific oracle on Wednesdays through node requests!

ETH Data Types

Section 2

Blocks, Transaction, Receipts, Addresses

Dissecting A Log

- Topics 1-3, Indexed
data (searchable by the
node)

- Data: Unlimited space
- Block Number
- Tx Index
- Log Index
- Removed

Topic[0]
- This defines the log

Topic[0] = kekack256(event_name(type1, type 2, …))

Careful: This is only unique for each contract!

Storage: Private Variables are not as Private as you Think
- Can access any storage of a contract even if the variable is

marked private
- Extremely useful for finding contracts using the EIP-1967

Proxy pattern

Infrastructure Design

Node 1

Node 1

Node 1

Events
Subscription
Service

Database

EPNS

AI Analysis

Database Options

Code Walkthrough

Section 3

Golang and Geth
- Fast
- Extremely well maintained
- Safe parallelisation
- Geth calls are portable to most EVM chains

This will allow us to deploy our program across multiple
chains since they will adhere to the RPC specification in
the yellowpaper

Creating a Client
client, err := ethclient.Dial(rpc)

 if err != nil {

 log.Fatal("Failed to connect to the websocket of

the Node (RPC) ", err)

 } else {

 fmt.Println("successfully connected to the RPC

endpoint!")

 }

Websockets vs Http

Creating a Query

 contractAddress := common.HexToAddress("0x60Ae865ee4C725cd04353b5AAb364553f56ceF82")

 query := ethereum.FilterQuery{

 Addresses: []common.Address{contractAddress},

 Topics: [][]common.Hash{{common. HexToHash("0x44403e38baed5e40df7f64ff8708b076c75a0dfda8380e75df5c36f11a476743")}},

}

FilterLogs vs Subscribe Filter Logs
sub, err := client.SubscribeFilterLogs(context.Background(), query, logs)

 if err != nil {

 log.Fatal(err)

 } else {

 fmt.Println("successfully subscribed to the contract events!")

 }

historiclogs, err := clientH.FilterLogs(context.Background(), historicQuery)

Creating a Channel

logs1 := make(chan types.Log)

for {

 select {

 case err := <-sub.Err():

 log.Fatal(err)

 case vLog := <-logs1:

//Do Processing

}

}

Generating an ABI

solc --abi events.sol

======= events.sol:Events =======
Contract JSON ABI
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"name","type"
:"string"},{"indexed":false,"internalType":"string","name":"symbol","type":"string"},{"inde
xed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"BaseIniti
alized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":....]}

Making an ABI Object and Unpacking

contractABI, err := abi.JSON(strings.NewReader(ABI_String))

 if err != nil {

 log.Fatal("could not convert JSON ABI string to ABI object")

 }

Interfaces, err := contractABI.Unpack("MY_EVENT_NAME", my_data)

MyBigInt := Interfaces[0].(*big.Int)

Working with a DB: Making Tables

type User struct {

 ID string `gorm:"primaryKey"`

 Address string

}

type CommentMessage struct {

 MessageID uuid.UUID ̀gorm:"primaryKey"`

 Sent bool

 ProfileId decimal.Decimal

 PubId decimal.Decimal

 ContentURI string

 ProfileIdPointed decimal.Decimal

 PubIdPointed decimal.Decimal

 CollectModule string

 CollectModuleReturnData string

 ReferenceModule string

 ReferenceModuleReturnData string

 Timestamp decimal.Decimal

}

Working with a DB: Connecting and Migrating

db, err := gorm.Open(postgres.Open(dsn), &gorm.Config{})

 //panic if we cannot connect to the database

 if err != nil {

 panic("failed to connect database")

 } else {

 //or else we are good to go

 fmt.Println("Connected to database")

 fmt.Println(db)

 }

 db.AutoMigrate(&database.User{})

 db.AutoMigrate(&database.CommentMessage{})

Working with a DB: Inserting and Upserting

myvar := database.FollowMessage{

 MessageID: uuid. New(),

 Sent: false,

 ProfileId: profileID,

 FollowNFT: followNFT,

 Timestamp: TimestampDecimal,

 }

 db. Clauses(clause.OnConflict{

 UpdateAll: true,

 }). Create(&myvar)

ProfileIDBI := ProfileIdInterface[0].(*big.Int)

 profileID := decimal.NewFromBigInt(ProfileIDBI, 0)

 followNFT := common.HexToAddress((Topics[2].Hex())).Hex()

Q&A

Section 4

Thank you!

Benjamin Memisevic

 @MemiHack_eth

