
Uri Kirstein Software Engineer and Developer Relations

BAD PROOFS IN FORMAL VERIFICATION

BUGS AFTER FORMAL VERIFICATION

LECTURE ROADMAP

What are proofs
in Formal Verification

Types of
bad proofs

Real life
example

How to tell if
a proof is bad

?

THE FORMAL VERIFICATION PROCESS

Proofs that
every behavior
meets the spec

A HARD TO FIND
behavior
which violates
the invariants

Unknown
Timeout

Code

Invariants

Certora
Prover

SIMPLE EXAMPLE

SOLIDITY CODE

transfer (address from, address to, uint256 amount) {
 require (balances[from] ≥ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

INVARIANT

totalSupply = Σ a: address balances[a]

BUG

from=”Alice”
to=”Alice”
amount = 18
old.balances(Alice) = 20
new.balances(Alice) = 38

SIMPLE EXAMPLE

SOLIDITY CODE

transfer (address from, address to, uint256 amount) {
 require (balances[from] ≥ amount);
 balances[from] := balances[from] - amount;
 balances[to] := balances[to] + amount;
}

INVARIANT

totalSupply = Σ a: address balances[a]

PROOF

Σ a: address old.balances[a]

 =

Σ a: address new.balances[a]

ADVANTAGES OF FORMAL VERIFICATION

Exhaustive

⬢ Finds easy to miss bugs

Proofs of correctness

⬢ Hard to verify
⬢ May be misleading!

Concrete counter examples

⬢ Found bugs are verifiable

!

ANATOMY OF A PROPERTY

transfer (address from, address to, uint256 amount) {
 require (balances[from] ³ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

Certora Verification Language (CVL)

rule checkTransfer(address bob, uint256 amount) {
env e; /* calling context (msg.sender, block.timestamp, ...) */
uint256 balanceBefore = balanceOf(bob);

transfer(e, bob, amount);

assert balanceOf(bob) == balanceBefore + amount;
}

Precondition

Operation

Postcondition

PROPERTY - VISUALIZATION OF WANTED BEHAVIOR

transfer (address from, address to, uint256 amount) {
 require (balances[from] ³ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

Space Of Possibilities

Desired State
(assert expression)

Start
State

(Constraint)

PROPERTY - A VIOLATED RULE

transfer (address from, address to, uint256 amount) {
 require (balances[from] ³ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

Space Of Possibilities

Start
State

(Constraint)

Desired State
(assert expression)

LOGIC DEFINES A FALSE STATEMENT AS THE EXISTENCE OF COUNTER
EXAMPLE TO A CLAIM

FALSE STATEMENTS

LECTURE ROADMAP

What are proofs
in Formal Verification

Types of
bad proofs

?

Real life
example

How to tell if
a proof is bad

DICTIONARY DEFINITION

Vacuous:

⬢ Empty

⬢ Meaningless

⬢ Lacking of significance

⬢ Lacking contents which could or should be present

Merriam-Webster
dictionary

REAL LIFE EXAMPLE

Uri Kirstein - 29 years old,
don’t have any children.

Statement - If I let my children drink
Colombian coâee, they will sleep better

Logic

Given that I have no
children, any statement
about them is
indisputable.

TRUE
(Vacuous)

REAL LIFE EXAMPLE

Uri Kirstein - 29 years old,
don’t have any children.

Statement - If I let my children drink
Colombian coâee, they will sleep better

Statement

If I let my children drink
Colombian coâee, they
will not sleep at night

TRUE
(Vacuous)

TRUE
(Vacuous)

PROPERTY - VISUALIZATION OF WANTED BEHAVIOR

transfer (address from, address to, uint256 amount) {
 require (balances[from] ³ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

Space Of Possibilities

Desired State
(assert expression)

There are no
starting

states

OpenZeppelin ERC1155

function balanceOf (address account,
uint256 id) public view virtual
override returns (uint256) {

require(account != address (0),
"ERC1155: address zero is not a
valid owner");

return _balances [id] [account];

Certora Verification Language (CVL)

// If the user has a token, then the token should exist
rule held_tokens_should_exist {
 address user;
 uint256 token:
 require balanceOf(0, token) == 0;

 // This assumption was proven in a separate rule
 require balanceOf (user, token) <= totalSupply0f (token);
 assert balanceOf (user, token) > 0 => token_exists (token);

VACUOUS RULE – CODE EXAMPLE

VACUOUS RULE – CAN PROVE ANYTHING

Certora Verification Language (CVL)

// If the user has a token, then the token should exist
rule held_tokens_should_exist {
 address user;
 uint256 token:
 require balanceOf(0, token) == 0;

 assert 0 > 1;

VACUOUS RULES ARE A COMMON PROBLEM

“our experience has shown that typically
20% of specifications pass vacuously
during the first formal-verification runs
of a new hardware design, and that
vacuous passes always point to a real problem
in either the design or its specification or environment”

I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Eãcient detection of vacuity in
ACTL formulas. Formal Methods in System Design, 18(2):141–162, 2001.

!

REACHABILITY CHECK

CVL
Discovering unreachability by adding assert false at the end of the rule

// If the rule passes, then it is vacuous
rule held_tokens should exist vacuity check {
address user;
uint256 token;
require balance0f (0, token) == 0;

// This assumption was proven in a separate rule
require balance0f (user, token) <= totalSupply0f (token) ;
assert balanceOf (user, token) > 0 => token exists (token);
assert false;

We expect the rule to
reach the assert false at
the end and fail

DISJOINT PRECONDITIONS –
UNREACHABILITY VISUALIZATION

transfer (address from, address to, uint256 amount) {
 require (balances[from] ³ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

Space Of Possibilities

Start State
X < Y

Y < Z

Z < X

Desired State
(assert
expression)

Vacuous assertions:

⬢ The saying of the same thing twice in diâerent words

⬢ A propositional statement that is always true

⬢ A formula or assertion that is true in every possible interpretation

VACUOUS ASSERTIONS – TAUTOLOGY DEFINITION
Wikipedia &
Oxford Dictionary

TAUTOLOGY EXAMPLE

rule something_is_always_transferred {
address recipient;
uint256 balance_before_transfer = balanceOf (recipient) ;
require balanceOf (recipient) == 0;

uint256 amount;
require amount > 0;

transfer(recipient, amount);

uint256 balance_after_transfer = balanceOf (recipient);
assert balanceOf(recipient) <= balance_after_transfer;

}

uint256 balance after transfer = balance0f(recipient);
assert balanceOf(recipient) <= balance after transfer;

TAUTOLOGY VISUALIZATION

transfer (address from, address to, uint256 amount) {
 require (balances[from] ³ amount);
 balancesFrom := balances[from] - amount;
 balancesTo := balances[to] + amount;
 balances[from] := balancesFrom;
 balances[to] := balancesTo;
}

Space Of Possibilities

Desired State
(assert expression)

Start
State

(Constraint)

FINDING TAUTOLOGIES

Remove all preconditions and the operations,
then check if the rule still passes

rule something_is_always_transferred_vacuity_check {
uint256 balance_after_transfer = balanceOf(recipient);
assert balanceOf(recipient) <= balance_after_transfer;

}

LECTURE ROADMAP

What are proofs
in Formal Verification

Types of
bad proofs

?

Real life
example

How to tell if
a proof is bad

Invariant

⬢ Always the same

⬢ Never changing

⬢ A logical assertion that is always held to be true

⬢ A property which remains unchanged after operations or transformations of a certain type
are applied

INVARIANTS
Wikipedia &
Oxford Dictionary

1. The base case - after constructor

2. The step - any external/public function
a. Assume the invariant
b. Call the function
c. Check if the invariant is still true

PROOF BY INDUCTION

TAUTOLOGICAL INVARIANT

A non-zero asset cannot be both
bitmap and active

// BAD INVARIANT
assert 0 <= i && i < 9 &&
getBitmapCurrency(account) != 0 &&
(

// When a bitmap is enabled it can only have currency masks
/ in the active currencies bytes
(hasCurrencyMask(account, i) && getActiveUnmasked (account, i) == 0) ||

getActiveMasked(account, i) == 0)
 => getActiveUnmasked(account, i) != getBitmapCurrency(account)

TAUTOLOGICAL INVARIANT

A non-zero asset cannot be both
bitmap and active

// BAD INVARIANT
assert 0 <= i && i < 9 &&
getBitmapCurrency(account) != 0 &&
(

// When a bitmap is enabled it can only have currency masks
/ in the active currencies bytes
(hasCurrencyMask(account, i) && getActiveUnmasked (account, i) == 0) ||

getActiveMasked(account, i) == 0)
 => getActiveUnmasked(account, i) != getBitmapCurrency(account)

TAUTOLOGICAL INVARIANT

If the bitmap currency is not zero, and the active currency is zero, then the
bitmap and active currencies are diâerent

// BAD INVARIANT
assert 0 <= i && i < 9 &&
getBitmapCurrency(account) != 0 &&
(

// When a bitmap is enabled it can only have currency masks
/ in the active currencies bytes
(hasCurrencyMask(account, i) && getActiveUnmasked (account, i) == 0) ||

getActiveMasked(account, i) == 0)
 => getActiveUnmasked(account, i) != getBitmapCurrency(account)

TAUTOLOGICAL INVARIANT

Same tautological
statement

// BAD INVARIANT
assert 0 <= i && i < 9 &&
getBitmapCurrency(account) != 0 &&
(

// When a bitmap is enabled it can only have currency masks
/ in the active currencies bytes
(hasCurrencyMask(account, i) && getActiveUnmasked (account, i) == 0) ||

getActiveMasked(account, i) == 0)
 => getActiveUnmasked(account, i) != getBitmapCurrency(account)

Masked

Unmasked

THE BUG

1. Enable a bitmap currency on your account, eg. ETH.

2. Deposit a second currency into your account, eg. DAI.

3. Call enableBitmapForAccount a second time, switching your bitmap
currency to DAI. Due to a logic error, the system believes that it would
have to check DAI twice in free collateral, eâectively doubling the DAI
collateral believed to be present in the account.

4. Borrow in significant amounts without suãcient collateral; drain funds

THE BUG

FIXED INVARIANT

A non-zero asset cannot be both
bitmap and active

// BAD INVARIANT
assert 0 <= i && i < 9 &&
 getActiveUnmasked(account, i) != 0 &&

hasCurrencyMask(account, i)
 => getActiveUnmasked(account, i) != getBitmapCurrency(account)

1. The fixed invariant catches the bug in enableBitmapCurrency

2. The fixed invariant verifies the bug fix

3. The tautology automatic detection finds the problem in the bad
invariant

AFTERMATH

Suspect, don’t trust

⬢ When the prover reports a bug, it is
always useful

⬢ When you get a proof, be suspicious

Writing specifications
is hard

Check your spec!
Human reviews
Automatic checks

TAKEAWAYS

Certain level of paranoia
is required with formal
verification:
● When the prover

reports a bug, it is
always useful

● When we get a
proof, be
suspicious

●A right specification can prevent
Billion $ bugs

Uri Kirstein Software Engineer and Developer Relations

THANK YOU!

