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The Why 



Smart contract wallets beyond multisigs



Smart contract wallets

Proxying contract interactions via another contract (/w extra logic)

● Pros:
○ Enable advanced automation/call wrapper

■ (Gnosis) Safe (Multisig)
■ DeFiSaver (external actor/bot to readjust your CDP) 

○ Advanced identity/key handling / asset separation 
■ ERC725/735 - Decentralized Identity Standards 
■ Argent (key - asset separation)

● Cons:
○ adds gas overhead 
○ may require extra integrations (EIP 1271 etc.)



Why messing up with rights?



Case for an asset rights layer

● Creating hooks into someone-else‘s wallet (if they consent) 
● Doesn‘t require moving actual assets around as much

○ Tackles accounting / KYC 
● Self-Custody collateral enables „DeFi Mortgage“ 

○ Have your cake and eat it too (Use them while they backing a loan) 
■ Voting rights, Gaming items/parcels, ENS names

● Asset renting 
○ Allow someone else using your tokens w/o losing actual ownership 



Technical details



https://docs.google.com/file/d/1Se17S5JKySZKZrd_l-kypV1X7ZqkOQT0/preview


Requirements

● Has to act as a normal contract wallet
○ Call arbitrary calladata on any address

■ transfer, approve, asset utility, etc.
● Enable tokenizing assets transfer rights (ATR)

○ Fungible, non-fungible, and semi-fungible assets
○ Enable ATR token holder to transfer asset from owners wallet
○ Prevent owner without an ATR token to transfer / burn its assets

■ Block transfer / burn calls
■ Block approval calls



Wallet design



Wallet design

● (Gnosis) Safe multisig contract wallet
○ Guard

■ checks before and after transaction
○ Module

■ enable to initiate transaction without 
owners approval



Challenges



Challenges

● Approval issue while minting an ATR token
● “Stalking attack”

○ Transferring a malicious asset to victims wallet
● EIP-1271
● Gas overhead
● Non-standard assets
● Not possible to use delegatecalls



Approval issues while minting ATR token

● Check that collection hasn’t approved address before minting ATR token
● 4 types of approval

○ ERC20 - approve(amount)
○ ERC721 - approve(id) + setApprovalForAll(address)
○ ERC1155  - setApprovalForAll(address)

● Only ERC721 - approve(id) has a getter function for approved address
● 💡 All approve calls are done through wallet

○ -> wallet can track them



“Stalking Attack”

● Put victims wallet into invalid tokenized balance state
○ -> Victim cannot execute any transaction

■ would revert on Insufficient tokenized balance error
● 2 types of transfer

○ Claim
■ to ATR token holder address

○ Transfer
■ to any address, but need recipient permission

● The attack can still be executed, but much harder
○ Functions to recover from this attack





Open challenges

● Enable EIP-1271
○ Wallet needs to “pre-approve” hash

● Gas overhead
○ Minting ATR token has constant overhead
○ Transferring asset via ATR token has linear overhead depending on a number of 

tokenized assets in a wallet
● Non-standard assets

○ Security issue for ATR token holder when asset defines non-standard transfer 
or approve function

● Not possible to use delegatecalls
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