devcon 5 / optimistic execution putting the internet on ethereum
Duration: 01:31:16
Speaker: Karl Floersch
Type: Breakout
Expertise: beginner
Event: Devcon
Date: Invalid Date
Cryptoeconomics at Scale
The next wave of internet applications will not only compete on functionality, but also incentives. With cryptoeconomic research we are witnessing the beginnings of incentive analysis being applied to the architecture of internet protocols. As this body of research grows, common methodologies are beginning to emerge. These methodologies are also beginning to be composed to produce even more sophisticated and scalable protocols. This talk provides an overview of these cryptoeconomic methodologies and calls for help in the quest to build a fairer web.
Optimism’s OP Stack
Introducing the OP Stack — a standardized tech stack for L2 chains. Introducing the Superchain vision — the inevitable unification of the distinct L2 chains into a single, horizontally scalable, super-sequenced, Superchain! The OP Stack is how we realize the Superchain vision.
Plasma Implementers Call Live!
The Plasma Implementers Call is a biweekly call which discusses the cutting edge of Plasma research. We will be doing a LIVE session! This is a great group of 9 people: Joseph Poon, Karl Floersch, Kelvin Fichter, Dan Robinson, David Knott, Xuanji Li, George Konstantopoulos, Alex Vlasov, & (if I can convince him) Vitalik! You can take a look at the YouTube channel here: https://www.youtube.com/channel/UCG2MeKuKDJRK4gFNk-dQuZQ Please subscribe! ;)
Scalable Blockchains & Asynchronous Programming
Ethereum's Vitalik Buterin presents on scalability and asynchronous programming.
Less Gas, More Fun: Optimising Smart Contracts through Yul
Due to the relative simplicity of the Ethereum Virtual Machine, it is possible to perform heavy analyses in order to optimize bytecode. The jump operations are a main obstacle for this, because they might require a preservation of all basic blocks in the worst case. To overcome this, Solidity's new optimizer operates on an intermediate language called Yul, which is close to EVM bytecode (and also wasm) but abstracts jump operations through real function calls. Each of the many optimizing operations are simple local equivalence transforms whose effects can be inspected at any time and which in combination should be both more reliable and efficient than the classic optimizer.
Raiden Network: Getting to a production ready payment channel network
The Raiden Network is the payment channel network for Ethereum aiming to help scale Ethereum payment and all Dapps that utilize Ethereum for payments and rely on no on-chain side effects of the payments. There will be a small explanation of what is payment channels and a payment channel network, an explanation of the raiden network protocol and a demo of using Raiden (hopefully by then live on the mainnet). We will close with future plans, expansion of the protocol and showcasing potential applications.
Scalabilty with zKSNARKs
Scalabilty with zKSNARKsThis session will introduce iden3’s zkSNARKs implementation and how it will be used at two scenarios: For the trustless relayer implementation at the identity management environment, allowing the identities to perform claims without cost at big scale.And the rollup project for Ethereum scalability, allowing verifiable computation off-chain to increase transaction throughput
A Fast and Scalable Blockchain for Enterprise Users
Almost every bank and major financial institution inChina as well as across the world is eager to revamp their computing infrastructure through blockchain. What a blockchain designed for them should look like? Is it enough to replace PoW with PBFT? What else can we do to leverage the resources enterprise users have? You will find the answers in CITA.
FunFair Technologies' Fate Channels: Lessons learned Implementing State Channels
Jeremy Longley, CTO of FunFair Technologies, will offer a post-mortem on the delivery of their own version of state channels, Fate Channels, to Mainnet. There have been significant challenges along the way, and there's likely to be many more to come as their use scales up. Having deployed a flexible and creative approach, Jeremy will outline how others can bypass these challenges and embrace state channels as best they can.
PISA: Arbitration Outsourcing for State Channels
PISA alleviates the "always online assumption" for all channel protocols and it is necessary for Raiden, L4, Perun, etc. State channels are a leading approach for improving the scalability of blockchains and cryptocurrencies. They allow a group of distrustful parties to optimistically execute an application-defined a program amongst themselves, while the blockchain serves as a backstop in case of a dispute or abort. This effectively bypasses the congestion, fees and performance constraints of the underlying blockchain in the typical case. However, state channels introduce a new and undesirable assumption that a party must remain on-line and synchronised with the blockchain at all times to defend against execution fork attacks. An execution fork can revert a state channel’s history, potentially causing financial damage to a party that is innocent except for having crashed. To provide security even to parties that may go offline for an extended period of time, we present Pisa, a protocol which enables such parties to delegate to a third party, called the custodian, to cancel execution forks on their behalf. To evaluate Pisa, we provide a proof-of-concept implementation for a simplified Sprites and we demonstrate that it is cost-efficient to deploy on the Ethereum network. Blog+Paper: http://hackingdistributed.com/2018/05/22/pisa/