devcon 2 / the mauve revolution
Duration: 00:26:41
Speaker: Vitalik Buterin
Type: Talk
Expertise: Intermediate
Event: Devcon
Date: Invalid Date
Scalable Blockchains & Asynchronous Programming
Ethereum's Vitalik Buterin presents on scalability and asynchronous programming.
Rollups, Shards & Fractals: The Dream of Atomically Composable Horizontal Scaling
Rollups allow blockchain to scale vertically, while preserving their trust properties. But what do we do when we reach the limits of vertical scalability? It might also be desirable to accomodate multiple rollups with different operating rules, virtual machines, or security trade-offs. Horizontal scaling solves these issues, but doesn't allow atomic composability. In this talk, we review approaches to horizontal scalability & ways to get as close to atomic composability as possible.
P2P Networking in Ethereum 2.0
Sharding and Casper promise to greatly improve performance, sustainability, and security of the Ethereum blockchain. Alongside a novel and much-discussed consensus protocol, they also entail fundamental changes to the requirements and constraints imposed on the peer-to-peer (p2p) networking layer. In this talk we report on ongoing research as well as the current implementation state of the latter. We begin by defining key qualitative and quantative properties the network should have. Then we discuss several options for both node discovery and gossip protocols, comparing their performance on the basis of simulationresults. Finally, we give an update on the current state and future developments of protocol implementations.
INCUBED - A trustless incentivized decentralized remote node network
To enable smart devices of the Internet of Things to be connected to the Ethereum blockchain, an Ethereum client needs to run on hardware. While running a full-node or even a light-client on most IoT devices with low performance or restricted resources is not possible or meaningful, today's state-of-the art solution uses a remote client. By using distinct remote-nodes, the advantages of a decentralized network without being forced to trust single players are undermined and there is a risk of malfunction or attack because there is a single point of failure.With the presented Trustless Incentivized Decentralized Remote Node Network, in short INCUBED, with a stateless minimal verification client it is possible to establish a decentralized and secure network of remote-nodes, which enables trustworthy and fast access to blockchain for a large number of low-performance IoT devices.
Raiden Network: Getting to a production ready payment channel network
The Raiden Network is the payment channel network for Ethereum aiming to help scale Ethereum payment and all Dapps that utilize Ethereum for payments and rely on no on-chain side effects of the payments. There will be a small explanation of what is payment channels and a payment channel network, an explanation of the raiden network protocol and a demo of using Raiden (hopefully by then live on the mainnet). We will close with future plans, expansion of the protocol and showcasing potential applications.
Optimism’s OP Stack
Introducing the OP Stack — a standardized tech stack for L2 chains. Introducing the Superchain vision — the inevitable unification of the distinct L2 chains into a single, horizontally scalable, super-sequenced, Superchain! The OP Stack is how we realize the Superchain vision.
A Fast and Scalable Blockchain for Enterprise Users
Almost every bank and major financial institution inChina as well as across the world is eager to revamp their computing infrastructure through blockchain. What a blockchain designed for them should look like? Is it enough to replace PoW with PBFT? What else can we do to leverage the resources enterprise users have? You will find the answers in CITA.
Ethereum 2.0 implementation updates 4Q2018/Prysmatic Labs: Implementing Ethereum 2.0 Today
The sharding implementation updates 4Q2018, mainly on Python side. // Sharding and layer-1 scalability are perhaps the most important, forward-thinking changes that Ethereum 2.0 will implement. Ever since the inception of the Sharding FAQ by Vitalik, both the foundation’s research team and the community have actively engaged in bringing ideas together into a solid specification and road ahead for the future of Ethereum. This task will focus around the ins-and-outs of building the high-level Ethereum 2.0’s Casper & Sharding spec into granular code by one of the main sharding implementation teams, Prysmatic Labs. We will analyze caveats we ran into when designing Ethereum 2.0 while the research is still in flux. Ethereum 2.0 encompasses a lot more than software upgrades, as it gives developers the opportunity to pave a path with better design capabilities, a better open source contribution ecosystem through documentations, and a more modular, pluggable set of tools built to last the test of time. We assembled organically as a team to build this out, and we aim to give back to the community from what we have learned so far in terms of building on a volatile research spes, attracting open source talent, mitigating technical debt, and why transparency and public work are important.
Less Gas, More Fun: Optimising Smart Contracts through Yul
Due to the relative simplicity of the Ethereum Virtual Machine, it is possible to perform heavy analyses in order to optimize bytecode. The jump operations are a main obstacle for this, because they might require a preservation of all basic blocks in the worst case. To overcome this, Solidity's new optimizer operates on an intermediate language called Yul, which is close to EVM bytecode (and also wasm) but abstracts jump operations through real function calls. Each of the many optimizing operations are simple local equivalence transforms whose effects can be inspected at any time and which in combination should be both more reliable and efficient than the classic optimizer.
FunFair Technologies' Fate Channels: Lessons learned Implementing State Channels
Jeremy Longley, CTO of FunFair Technologies, will offer a post-mortem on the delivery of their own version of state channels, Fate Channels, to Mainnet. There have been significant challenges along the way, and there's likely to be many more to come as their use scales up. Having deployed a flexible and creative approach, Jeremy will outline how others can bypass these challenges and embrace state channels as best they can.